|Table of Contents|

Genetic diversity of Sichuan Basin populations of Microhyla fissipes inferred from mt-COI gene sequences

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2018 05
Page:
1058-1064
Research Field:
Articles
Publishing date:

Info

Title:
Genetic diversity of Sichuan Basin populations of Microhyla fissipes inferred from mt-COI gene sequences
Author(s):
ZHANG Mengjie1 2 XU Liangliang1 2 ZHANG Jing2 Chang Qing1 WANG Bin2 ZHU Lifeng1** & JIANG Jianping2**
1 School of Life Sciences, Nanjing Normal University, Nanjing 210023, China 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
Keywords:
Microhyla fissipes Sichuan Basin COI genetic population diversity population expansion
CLC:
Q959.530.8 Genetic di
PACS:
DOI:
10.19675/j.cnki.1006-687x.2018.01008
DocumentCode:

Abstract:
Microhyla fissipes is a frog that is widely distributed in China to the south of Qinling Mountains, especially in the Sichuan Basin, where it is considered to be one of the most common species. It is important that genetic data is collected on M. fissipes to provide a theoretical basis for the conservation and management of this and other local amphibian species. To study the genetic diversity, population differentiation, and history of M. fissipes in the Sichuan basin, the mitochondrial COI (mt-COI) gene was used as a molecular marker. A 618 bp fragment of the mt-COI gene was successfully sequenced in 354 individuals sampled from 28 populations in the Sichuan Basin. A total of 17 haplotypes were identified. The average haplotype diversity (Hd) and nucleotide diversity (Pi) were 0.166 and 0.000 75, respectively. The estimated gene flow (Nm) among populations was 1.60. The fixation index (Fst) and genetic differentiation coefficient (Gst) among all groups were 0.270 and 0.140, respectively. The Neutral test showed significant differences (Tajima’s D value = -2.380, P < 0.001; Fu’s Fs value = -22.169, P < 0.02), and the mismatch distribution maps showed a single peak corresponding to a Poisson distribution, which indicated that M. fissipes has undergone a population expansion recently. The population expansion time was calculated to be about 0.235 Ma BP (millions of years before present), in the late Pleistocene. These results indicated that the population genetic diversity of M. fissipes was relatively low, while the level of genetic exchange among populations was contrarily found to be high. In this case, no obvious differentiation among the various populations in the Sichuan Basin was observed. Actually, the population expansion we inferred for M. fissipes had existed in history.

References

1. Matsui M, Ito H, Shimada T, Ota H, Saidapur SK, Khonsue W, Tanaka T, Wu GF. Taxonomic relationships within the pan-oriental narrow-mouth toad Microhyla ornata as revealed by mtDNA analysis (Amphibia, Anura, Microhylidae) [J]. Zool Sci, 2005, 22 (4): 489-495
2. 费梁, 叶昌媛, 江建平. 中国两栖动物及其分布彩色图鉴[M]. 成都: 四川科技出版社, 2012 [Fei L, Ye CY, Jiang JP. Colored Atlas of Chinese Amphibians and Their Distributions [M]. Chengdu: Sichuan Publishing House of Science and Technology, 2012]
3. 陈文元, 王子淑, 王喜忠, 杨玉华, 孙启玲. 四川六种蛙染色体组型的比较研究[J]. 动物学研究, 1983, 4 (1): 83-88 [Chen WY, Wang ZS, Wang XZ, Yang YH, Sun QL. A comparative study of the karyotypes from six species of frogs in Sichuan [J]. Zool Res, 1983, 4 (1): 83-88]
4. 曹承和. 饰纹姬蛙和金线蛙mtDNA全序列分析及其在无尾目系统发生关系中的应用[D]. 合肥: 安徽师范大学, 2007 [Chao CH. Complete mtDNA analysis of the Microhyla ornata and Rana plancyi, and implication for anura groups phylogeny [D]. Hefei: Anhui Normal University, 2007]
5. 王伟, 程立生, 符瑞敏. 海南岛稻田饰纹姬蛙的食性分析[J]. 海南大学学报(自然科学版), 2008, 26 (3): 241-248 [Wang W, Cheng LS, Fu RM. An analysis on feeding habits of Microhyla ornate in paddy field of Hainan Island [J]. Nat Sci J Hainan Univ, 2008, 26 (3): 241-248]
6. Liu LS, Zhao LY, Wang SH, Jiang JP. Research proceedings on amphibian model organisms [J]. Zool Res, 2016, 37 (4): 237-245
7. 李玉龙, 王循刚, 付磊, 束潇潇, 王斌, 江建平. 海南岛饰纹姬蛙种群的形态变异[J]. 应用与环境生物学报, 2017, 23 (6): 1135-1141 [Li YL, Wang XG, Fu L, Shu XX, Wang B, Jiang JP. Morphological variation of Microhyla fissipes on Hainan Island [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1135-1141
8. Wang SH, Zhao LY, Liu LS, Yang DW, Khatiwada JR, Wang B, Jiang JP. A complete embryonic developmental table of Microhyla fissipes (Amphibia, Anura, Microhylidae) [J]. Asian Herpetol Res, 2017, 8 (2): 108-117
9. Zhao LY, Liu LS, Wang SH, Wang HY, Jiang JP. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis [J]. Sci Rep, 2016, 6: 27310
10. Liu LS, Wang SH, Zhao LY, Jiang JP. De novo transcriptome assembly for the lung of the ornamented pygmy frog (Microhyla fissipes) [J]. Genomi Dat, 2017, 13: 44-45
11. 江为为, 刘伊克, 郝天珧, 宋海斌. 四川盆地综合地质、地球物理研究[J]. 地球物理学进展, 2001, 16 (1): 11-23 [Jiang WW, Liu YK, Hao TY, Song HB. Comprehensive study of geology and geophysics of Sichuan Basin [J]. Progr Geophys, 2001, 16 (1): 11-23]
12. 吴萌. 四川盆地植物生态条件与生产潜力的探讨[J]. 四川林业科技, 1980, 3 (2): 66-70 [Wu M. Ecological conditions and productive potential of plants in Sichuan Basin [J]. J Sichuan For Sci Technol, 1980, 3 (2): 66-70]
13. 费梁, 叶昌媛. 四川两栖类原色图鉴[M]. 北京: 中国林业出版社, 2001 [Fei L, Ye CY. Primary Color Atlas of Amphibian in Sichuan [M]. Beijing: China Forestry Press, 2001]
14. 江建平, 谢锋, 臧春鑫, 蔡蕾, 李成, 王斌, 李家堂, 王杰, 胡军华, 王燕, 刘炯宇. 中国两栖动物受威胁现状评估[J]. 生物多样性, 2016, 24 (5): 588-597 [Jiang JP, Xie F, Zang CX, Cai L, Li C, Wang B, Li JT, Wang J, Hu JH, Wang Y, Liu JY. Assessing the threat status of amphibians in China [J]. Biod Sci, 2016, 24 (5): 588-597]
15. Yuan ZY, Suwannapoom C, Yan F, Poyarkov NA, Nguyen SN, Chen HM, Chomdej S, Murph RW, Che J. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina [J]. Curr Zool, 2016, 62: 531-543
16. Hebert PD, Ratnasingham S, Dewaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species [J]. Proc Bio Sci, 2003, 270 (S1): 96-99
17. Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity through DNA barcoding: chances and challenges [J]. Philos Trans R Soc London Ser B, 2005, 360 (1462): 1859-1868
18. Ward RD, Zemlak TS, Innes BH, Last PR. DNA barcoding Australia’s fish species [J]. Philos Trans RSoc London Ser. B, 2005, 360 (1462): 1847-1857
19. Shen Y, Guan L, Wang D, X Gan. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River [J]. Ecol Evol, 2016, 6 (9): 2702-2713
20. Licuanan AM, Duya RM, Ong PS, Fontanilla KC. DNA barcoding, population genetics, and phylogenetic of the illegally hunted Philippine Duck Anas luzonica (Aves: Anseriformes: Anatidae) [J]. J Threat Taxa, 2017, 9 (5): 10141-10150
21. Huang Z, Yang C, Ke DH. DNA barcoding and phylogenetic relationships in Anatidae [J]. Mit DNA, 2016, 27 (2): 1042
22. Ayied AY, Aimossawi ZR. Determination of different species of animal from their meats by using PCR-RFLP technique of mitochondria gene COI [J]. Basr J Agr Sci, 2017, 30 (1): 59-64
23. 胡泽章, 孙猛, 吕兵, 段敏, 廖一凡, 陈浩, 郑礼, 于毅. DNA条形码技术在小花蝽属昆虫分类鉴定中的应用[J]. 中国生物防治学报, 2017, 33 (4): 487-495 [Hu ZZ, Sun M, Lu B, Duan M, Liao YF, Chen H, Zhen L, Yu Y. Application of DNA barcoding technique for species identification of Orius Wolff (Heteroptera: Anthocoridae) [J]. Chin J Biol Control, 2017, 33 (4): 487-495]
24. Lyra ML, Haddad CFB, De Azeredo-Espin AML. Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers [J]. Mol Ecol Res, 2017, 17: 966-980
25. 周瑜, 杨宝田. 基于线粒体Cytb和COI基因的中国林蛙系统发生关系[J]. 长春师范大学学报, 2014, 4: 70-76 [Zhou Yu, Yang BT. Phylogeny of Chinese brown frogs based on partial mitochondrial cytochrome b and cytochrome oxidase 1 gene sequences [J]. J Changchun Norm Univ, 2014, 4: 70-76]
26. Jennings WB, Wogel H, Bilate M, Salles RDOL, Buckup PA. DNA barcoding reveals species level divergence between populations of the microhylid frog genus Arcovomer (Anura: Microhylidae) in the Atlantic rainforest of southeastern Brazil [J]. Mit DNA ParA, 2016, 27 (5): 3415-3422
27. Marosi BA, Sos T, Ghira IV, Popes O. COI based phytogeography and intraspecific genetic variation of Rana Dalmatian populations in the vicinity of the Carpathians [J]. German J Zool Res, 2013, 1 (1): 7-16
28. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucl Acids Sym Ser, 1999, 41 (41): 95-98
29. Tamura K, Dudley J, Nei M, Kumar S. Mega 4: molecular evolutionary genetics analysis (mega) software version 4.0 [J]. Mol Biol Evol, 2007, 24 (24): 1596-1599
30. Tajima F. The effect of change in population size on DNA polymorphism [J]. Genetics, 1989, 123 (3): 597-601
31. Rogers AR. Genetic evidence for a Pleistocene population explosion [J]. Evolution, 1995, 49 (4): 608-615
32. Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences [J]. Mol Biol Evol, 1992, 9 (3): 552-569
33. Rao DQ, Wilkinson JA. Phylogenetic relationships of the mustache toads inferred from mtDNA sequences [J]. Mol Phyl Evol, 2008, 46 (1): 61-73
34. 费梁, 叶昌媛, 黄勇昭, 胡淑琴. 中国动物志-两栖纲[M]. 北京: 科学出版社, 2009 [Fei L, Ye CY, Huang YZ, Hu SQ. Fauna Sinica Amphibia [M]. Beijing: Science Press, 2009]
35. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies [J]. Mol Biol Evol, 1999, 16 (1): 37-48
36. Xia X. Data analysis in molecular biology and evolution [J]. Kluwer Acad, 2000, 30 (4): 371-373
37. Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference for phylogeny [J]. Bioinformatics, 2001, 17: 754-755
38. Kearney M, Spindler J, Shao W, Maldarelli F, Palmer S, Hu SL, Lifson JD, KewalRamani VN, Mellors JW, Coffin JM, Ambrose Z. Genetic diversity of simian immunodeficiency virus encoding HIV-1 reverse transcriptase persists in macaques despite antiretroviral therapy [J]. J Virol, 2011, 85 (2): 1067-1076
39. Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M. Ecological consequences of genetic diversity [J]. Ecol Lett, 2008, 11 (6): 609-623
40. Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation [J]. Conser Biol, 2007, 21 (3): 697-708
41. 文亚峰, 韩文军, 吴顺. 植物遗传多样性及其影响因素[J]. 中南林业科技大学学报, 2010, 30 (12): 80-87 [Wen YF, Han WJ, Wu S. Plant genetic diversity and its influencing factors [J]. J Central S Univ For Technol, 2010, 30 (12): 80-87]
42. Grant W, Bowen BW. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation [J]. J Hered, 1998, 89 (5): 415-426
43. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST. Genetic traces of ancient demography [J]. PNAS, 1998, 95 (4): 1961-1967
44. Donnelly P, Tavare S. The ages of alleles and a coalescent [J]. Advs Appl Prob, 1986, 18: 1-19
45. Wrights S. The genetical structure of populations [J]. Ann Eugen, 1951, 15: 323-334
46. Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance [J]. Genetics, 1997, 145 (4): 1219-1228
47. Millar CI, Libby WJ. Strategies for conserving clinal, ectopic, and disjunct population diversity in widespread species//Falk DA, Holsingr KE. Genetics and Conservatoon of Rare Plants [M]. Oxford: Oxford University Press, 1991, Chapter 10: 149-170
48.

Memo

Memo:
-
Last Update: 2018-10-25