|本期目录/Table of Contents|

[1]唐秋菊,须涛,王东,等.聚类GO术语在基因表达差异研究中的应用[J].应用与环境生物学报,2011,17(03):422-426.[doi:10.3724/SP.J.1145.2011.00422]
 TANG Qiuju,XU Tao,WANG Dong,et al.Clustering GO Terms Applied to Differential Gene Expression Detection[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):422-426.[doi:10.3724/SP.J.1145.2011.00422]
点击复制

聚类GO术语在基因表达差异研究中的应用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
17卷
期数:
2011年03期
页码:
422-426
栏目:
技术与方法
出版日期:
2011-06-24

文章信息/Info

Title:
Clustering GO Terms Applied to Differential Gene Expression Detection
作者:
唐秋菊须涛王东李令锦杜林方
(1四川大学生物资源与生态环境教育部重点实验室 成都 610064)
(2四川大学纳米生物医学技术与膜生物学研究所 成都 610041)
Author(s):
TANG Qiuju XU Tao WANG Dong LI Lingjin DU Linfang
(1Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China)
(2Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu 610041, China)
关键词:
基因本体层次聚类基因差异表达语义相似性
Keywords:
gene ontology hierarchy clustering differential gene expression semantic similarity
分类号:
Q811.4
DOI:
10.3724/SP.J.1145.2011.00422
文献标志码:
A
摘要:
针对基因功能分类体系基因本体(Gene Ontology,GO)特殊的有向无环图特点,改进传统的用单个GO术语检测基因差异表达信号的缺陷,设计出“聚类GO术语提升差异表达检测(ScaGO)”算法. 通过简单的输入对照和实验组表达谱上的全部基因表达信号,来研究一些比较新的差异表达功能组,有助于进一步解释基因差异表达的生物学意义,如疾病发病机制、药物作用机理等. 将ScaGO和基于单GO术语差异分析法应用到急性淋巴细胞性白血病数据集和酵母Rap1 DNA绑定突变体差异表达数据集上,结果显示,ScaGO能比基于单GO术语差异分析法发现一些新的与差异表达相关联的功能类基因,对于指导实验具有积极意义. 图1 表3 参21
Abstract:
To improve individual GO term analysis algorithm for detecting differential gene expression, according to the directed acyclic graph structure property of gene classification system, Gene Ontology (GO), a novel and effective method named significant cluster analysis based on GO (ScaGO) was presented. The inputs of ScaGO were the expression values from a case-control microarrary experiment, aimed at detecting some novel differential expression changes. The results had shown some insights into gene expression difference at the functional level, towarded clarification of the process of pathological changes or mechanism of medicine. Both ScaGO and individual GO term analysis were applied to the acute lymphoblastic leukemia expression dataset and yeast Rap1 DNA-binding mutant dataset. Compared to individual GO term analysis, ScaGO was turned out to be more sensitive, and some novel differential expression changes which were mostly reported were mined successfully. It means that our ScaGO can provide the positive help in the experimental guidance. Fig 1, Tab 3, Ref 21

参考文献/References:

1 Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitor in of 1000 genes. Proc Natl Acad Sci U S A, 1996, 93 (20): 10614~10619
2 Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics, 2001, 17 (6): 509~519
3 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25 (1): 25~29
4 Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R. A systems biology approach for pathway level analysis. Genome Res, 2007, 17 (10): 1537~1545
5 Trajkovski I, Lavrac N, Tolar J. SEGS: Search for enriched gene sets in microarray data. J Biomed Inform, 2008, 41 (4): 588~601
6 Nam D, Kim SB, Kim SK, Yang S, Kim SY, Chu IS. ADGO: Analysis of differentially expressed gene sets using composite GO annotation. Bioinformatics, 2006, 22 (18): 2249~2253
7 Chiaretti S, Li X, Gentleman R, Vitale A, Wang KS, Mandelli F, Foa R, Ritz J. Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clin Cancer Res, 2005, 11 (20): 7209~7219
8 Huber W, Heydebreck AV, Sueltmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 2002, 18: 96~104
9 Yarragudi A, Parfrey LW, Morse RH. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Res, 2007, 35 (1): 193~202
10 Resnik P. Using information content to evaluate semantic similarity in a taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995. 448~453
11 Jiang J, Conrath DJ. Semantic similarity based on corpus statistics and lexical taxonomy. Proceeding of International Conference Research on Computational Linguistics, Taipei, China, 1997. 19~33
12 Lin D. An information-theoretic definition of similarity. Proceedings of the 15th international conference on machine learning, Wisconsin, USA, 1998. 296~304
13 Kim SY, Volsky DJ. PAGE: Parametric analysis of gene set enrichment. BMC Bioinformatics, 2005, 6: 144
14 Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Statist, 2001, 29 (4): 1165~1188
15 Dierov J, Dierova R, Carroll M. BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell, 2004, 5 (3): 275~285
16 Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA, 1995, 92 (25): 11746~11750
17 Cambier N, Zhang Y, Vairo G, Kosmopoulos K, Metcalf D, Nicola NA, Elefanty AG. Expression of BCR-ABL in M1 myeloid leukemia cells induces differentiation without arresting proliferation. Oncogene, 1999, 18 (2): 343~352
18 Dupuy AG, L’Hoste S, Cherfils J, Camonis J, Gaudriault G, de Gunzburg J. Novel Rap1 dominant-negative mutants interfere selectively with C3G and Epac. Oncogene, 2005, 24 (28): 4509~4520
19 Scottt EW, Baker HV. Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol Cell Biol, 1993, 13 (1): 543~550
20 Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E. Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003, 34 (3): 267~273
21 Hummel M, Meister R, Mansmann U. GlobalANCOVA: Exploration and assessment of gene group effects. Bioinformatics, 2008, 24 (1): 78~85

备注/Memo

备注/Memo:
科技部“十一五”支撑计划项目(No. 2006BAF07B01)资助
更新日期/Last Update: 2011-06-23