|本期目录/Table of Contents|

[1]周蕾,Mbadinga Serge Mauri,王立影,等.石油烃厌氧生物降解代谢产物研究进展[J].应用与环境生物学报,2011,17(04):607-613.[doi:10.3724/SP.J.1145.2011.00607]
 ZHOU Lei,MBADINGA Serge Maurice,WANG Liying,et al.Recent Progress in Metabolites Formed During Anaerobic Biodegradation of Petroleum Hydrocarbons[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):607-613.[doi:10.3724/SP.J.1145.2011.00607]





Recent Progress in Metabolites Formed During Anaerobic Biodegradation of Petroleum Hydrocarbons
周蕾Mbadinga Serge Mauri王立影刘金峰杨世忠牟伯中
(华东理工大学生物反应器工程国家重点实验室,应用化学研究所 上海 200237)
ZHOU Lei MBADINGA Serge Maurice WANG Liying LIU Jinfeng YANG Shizhong MU Bozhong
(State Key Laboratory of Bioreactor Engineering, Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, China)
petroleum hydrocarbons anaerobic biodegradation benzylsuccinic acid alkylsuccinic acid biomarker initial activation
石油烃厌氧生物降解代谢产物的分析对于石油烃厌氧降解机制的研究、功能微生物的筛选以及微生物活动的原位监测具有指示性作用. 综述了近年来石油烃厌氧生物降解代谢产物的研究进展. 石油烃厌氧降解的初始活化方式主要包括脱氢羟基化、加延胡索酸以及羧化等. 其中,加延胡索酸是不同种类的微生物通常采用的代谢方式. 同时,将代谢产物按照气体、无机离子和有机酸进行分类,并针对各类物质特别是瞬时性、低浓度的有机酸类产物常采用的分析方法进行归纳. 通过实例强调了代谢产物作为潜在生物标记物的应用,并对石油烃厌氧降解代谢产物分析方法的发展提出展望. 图3 参58
Detection of specific metabolites formed during anaerobic biodegradation of petroleum hydrocarbons is of great importance to understand the mechanisms involved, to screen for functional microbes, and to monitor in-situ microbial activities. This paper focus on recent progress in metabolites formed during anaerobic biodegradation of petroleum hydrocarbons. Distinct biochemical activation strategies include dehydrogenation and hydroxylation, fumarate addition and carboxylation. Among them, fumarate addition yielding succinic acid derivatives is likely the most widespread strategy in different microbial phylotypes. Metabolites formed are classified as gaseous, inorganic ions and organic acids. Their analytical methods, especially for transient and low concentrations of organic acids, are summarized. Case studies are presented to emphasize the application of specific metabolites as potential biomarkers, and the prospects for future research on the detection and characterization of signature metabolites resulting from the anaerobic degradation of petroleum hydrocarbons are proposed. Fig 3, Ref 58


1 Aitken CM, Jones DM, Larter SR. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 2004, 431 (7006): 291~294
2 Gieg LM, Suflita JM. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol, 2002, 36 (17): 3755~3762
3 Wang LY (王立影), Mbadinga SM, Li H (李辉), Liu JF (刘金峰), Yang SZ (杨世忠), Mu BZ (牟伯中). Anaerobic biodegradation of petroleum hydrocarbons and enlightenment of the prospects for gasification of residual oil. Microbiol China (微生物学通报), 2010, 37 (1): 96~102
4 Aeckersberg F, Rainey FA, Widdel F. Growth, natural relationships, cellular fatty acids and metabolic adaption of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol, 1998, 170 (5): 361~369
5 Musat F, Widdel F. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol, 2008, 10 (1): 10~19
6 Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol, 2009, 11 (1): 209~219
7 Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999, 401 (6750): 266~269
8 Anderson RT, Lovley DR. Biogeochemistry: Hexadecane decay by methanogenesis. Nature, 2000, 404 (13): 722~723
9 Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol, 2006, 72 (6): 4274~4282
10 Callaghan AV, Tierney M, Phelps CD, Young LY. Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Appl Environ Microbiol, 2009, 75 (5): 1339~1344
11 Heider J, Spormann AM, Beller HR, Widdel F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev, 1999, 22 (5): 459~473
12 Spormann AM, Widdel F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation, 2000, 11 (2/3): 85~105
13 Widdel F, Boetius A, Rabus R. Anaerobic biodegradation of hydrocarbons including methane. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E eds. The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes. New York, USA: Springer, 2006. 1028~1049
14 Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A. Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Org Geochem, 2008, 39 (8): 1197~1203
15 Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol, 2001, 12 (3): 259~276
16 Röling WFM, Head IM, Larter SR. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol, 2003, 154 (5): 321~328
17 Ficker M, Krastel K, Orlicky S, Edwards E. Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol, 1999, 65 (12):5576~5585
18 Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F. Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol, 2003, 69 (2): 760~768
19 Young LY, Phelps CD. Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Perspect, 2005, 113 (1): 62~67
20 Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature, 2007, 449 (7164): 898~901
21 Kunapuli U, Griebler C, Beller HR, Meckenstock RU. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol, 2008, 10 (7): 1703~1712
22 So CM, Phelps CD, Young LY. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, Strain Hxd3. Appl Environ Microbiol, 2003, 69 (7): 3892~3900
23 Gieg LM, Duncan KE, Suflita JM. Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol, 2008, 74 (10): 3022~3029
24 Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2008, 451 (7175): 176~180
25 Boll M, Fuchs G, Heider J. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol, 2002, 6 (5): 604~611
26 Gieg LM, Alumbaugh RE, Field J, Jones J, Istok JD, Suflita JM. Assessing in situ rates of anaerobic hydrocarbon bioremediation. Microb Biotechnol, 2009, 2 (2): 222~233
27 Colberg PJ, Young LY. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers. Appl Environ Microbiol, 1985, 49 (2): 350~358
28 Zinder SH, Koch M. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol, 1984, 138 (3): 263~272
29 Jackson BE, McInerney MJ. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature, 2002, 415 (6870): 454~456
30 Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol, 1995, 163 (2): 96~103
31 Lovley DR, Phillips EJP. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol, 1986, 51 (4): 683~689
32 Eriksson S, Hallbeck L. Indicators of petroleum hydrocarbon biodegradation in anaerobic granitic groundwater. Geomicrobiol J, 2006, 23 (1): 45~58
33 So CM, Young LY. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol, 1999, 65 (7): 2969~2976
34 Albert DB, Martens CS. Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Mar Chem, 1997, 56 (1/2): 27~37
35 Bao MT (包木太), Mu BZ (牟伯中), Wang XL (王修林). Analysis of metabolites of microorganisms used for oil recovery. Oilfield Chem (油田化学), 2002, 19 (2): 188~192
36 Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol, 2001, 183 (5): 1707~1715
37 Beller HR, Ding WH, Reinhard M. Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ Sci Technol, 1995, 29 (11): 2864~2870
38 Jones DM, Watson JS, Meredith W, Chen M, Bennett B. Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction. Anal Chem, 2001, 73 (3):703~707
39 Reusser DE, Field JA. Determination of benzylsuccinic acid in gasoline-contaminated groundwater by solid-phase extraction coupled with gas chromatography-mass spectrometry. J Chromatogr A, 2002, 953 (1/2): 215~225
40 Beller HR. Analysis of benzylsuccinates in groundwater by liquid chromatography/tandem mass spectrometry and its use for monitoring in situ BTEX biodegradation. Environ Sci Technol, 2002, 36 (12): 2724~2728
41 Alumbaugh RE, Gieg LM, Field JA. Determination of alkylbenzene metabolites in groundwater by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A, 2004, 1042 (1/2): 89~97
42 Ulrich AC, Bller HR, Edwards EA. Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol, 2005, 39 (17): 6681~6691
43 Bombach P, Richnow HH, Kästner M, Fischer A. Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol, 2010, 86 (3): 839~852
44 Beller HR. Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation, 2000, 11 (2/3): 125~139
45 Bastin ES, Greer FE, Merritt CA, Moulton G. The presence of sulphate reducing bacteria in oil field waters. Science, 1926, 63 (1618): 21~24
46 Chakraborty R, Coates JD. Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol, 2004, 64 (4): 437~446
47 Dojka MA, Hugenholtz P, Haack SK, Pace NR. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol, 1998, 64 (10): 3869~3877
48 Bauschlicher CW JR, Langhoff SR. Bond dissociation energies for substituted polycyclic aromatic hydrocarbons and their cations. Mol Phys, 1999, 96 (4): 471~476
49 Bedessem ME, Swoboda-Colberg NG, Colberg PJS. Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett, 1997, 152 (2): 213~218
50 Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J. Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry, 2007, 46 (25): 7637~7646
51 Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol, 2009, 43 (20): 7977~7984
52 Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Mol Bio Rev, 1979, 43 (2): 260~296
53 Gige LM, Davidova IA, Duncan KE, Suflita JM. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol, 2010, 12 (11): 3074~3086
54 Balch WE, Wolfe RS. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol, 1976, 32 (6): 781~791
55 Bregnard TPA, Häner A, Höhener P, Zeyer J. Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl Environ Microbiol, 1997, 63 (5): 2077~2081
56 Kane SR, Beller HR, Legler TC, Anderson RT. Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. Biodegradation, 2002, 13 (2): 149~154
57 Washer CE, Edwards EA. Identification and expression of benzylsuccinate synthase genes in a toluene-degrading methanogenic consortium. Appl Environ Microbiol, 2007, 73 (4): 1367~1369
58 Laban NA, Selesi D, Rattei T, Tischler P, Meckenstock RU. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol, 2010, 12 (10): 2783~2796


 Xu Xiangyang,Tu Ming,Yu Xiue,et al.A STUDY ON BIODEGRADATIVE ACTIVITY OF PENTACHLOROPHENOL BY ANAEROBIC GRANULAR SLUDGE[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):398.
 Bai Wei,Cheng Yugu,Wang Tingfang,et al.STUDY ON TREATING DISTILLERY WASTEWATER BY A UASB REACTOR AT THERMOPMILIC CONDITIONS[J].Chinese Journal of Applied & Environmental Biology,1997,3(04):380.
 LI Xia,et al..Advances in Anaerobic Biodegradation of Hydrocarbon[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):283.
 LUAN Xiao,CUI Zhisong,GAO Wei,et al.Genotoxicity evaluation based on luminescent bacteria Acinetobacter sp. RecA for seawater contaminated by Huangdao oil spill[J].Chinese Journal of Applied & Environmental Biology,2015,21(04):665.[doi:10.3724/SP.J.1145.2015.01059]
[5]吴蔓莉,袁婧,李炜,等.石油污染土壤的微生物修复及 土壤微生物活性变化*[J].应用与环境生物学报,2016,22(05):878.[doi:10.3724/SP.J.1145.2016.01044]
 WU Manli**,YUAN Jing,LI Wei,et al.Bioremediation of petroleum contaminated soil and activity of hydrocarbon degrading bacteria*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):878.[doi:10.3724/SP.J.1145.2016.01044]


国家“863”计划项目(No. 2009AA063503)资助
更新日期/Last Update: 2011-08-16