|本期目录/Table of Contents|

[1]刘燕,强小林,黄静,等.中国大麦育成品种(系)的遗传多样性[J].应用与环境生物学报,2013,19(01):79-83.[doi:10.3724/SP.J.1145.2013.00079]
 LIU Yan,QIANG Xiaolin,HUANG Jing,et al.Genetic Diversity Among Barley Varieties (Lines) Bred in China[J].Chinese Journal of Applied & Environmental Biology,2013,19(01):79-83.[doi:10.3724/SP.J.1145.2013.00079]
点击复制

中国大麦育成品种(系)的遗传多样性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年01期
页码:
79-83
栏目:
研究论文
出版日期:
2013-02-25

文章信息/Info

Title:
Genetic Diversity Among Barley Varieties (Lines) Bred in China
作者:
刘燕强小林黄静张笑谭爱女赵纯钦陈静
(1中国科学院成都生物研究所 成都 610041)
(2西藏自治区农牧科学院 拉萨 850000)
(3四川农业大学生命科学与理学院 雅安 625014)
Author(s):
LIU YanQIANG XiaolinHUANG JingZHANG XiaoTAN AinüZHAO ChunqinCHEN Jing
(1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
(2Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China)
(3College of Life and Basic Sciences, Sichuan Agricultural University, Ya’an 625014, Sichuan, China)
关键词:
大麦育成品种(系)SSR标记遗传多样性聚类分析
Keywords:
barley variety (line) SSR marker genetic diversity clustering analysis
分类号:
S512. 303
DOI:
10.3724/SP.J.1145.2013.00079
文献标志码:
A
摘要:
为了解我国大麦育成品种(系)的遗传基础现状,利用位于大麦7个连锁群上不同位置的25对SSR引物对来自国内不同区域的大麦推广和新育成品种(系)的遗传多样性及其亲缘关系进行分析. 结果表明,25对SSR引物在73个大麦品种间均有多态性扩增,每一对引物检测到的等位基因数目在2-6之间,平均为3.92个. SSR引物的多态性信息含量(PIC)变幅为0.252-0.780,平均为0.569. 遗传多样性分析发现,我国不同大麦产区的皮大麦品种(系)间遗传相似性系数(GS)变化范围为0.661-0.767(平均值0.714),青藏高原地区青稞品种(系)间遗传相似性系数变化范围为0.533-0.925(平均值0.699),表明目前国内皮大麦和青稞的遗传多样性均较差、品种遗传背景单一. 通过聚类分析,在遗传相似系数0.671水平处,42份皮大麦材料聚为2大类;在遗传相似系数0.618水平处,31份青稞材料聚为5大类,来源地相同的材料通常聚在同一大类或亚类,材料聚类结果与其地理来源有一定相关性. 本研究表明SSR标记具有较好的遗传变异检测能力,对大麦品种(系)间的遗传多样性评价可为我国大麦育种过程中亲本材料的选择和利用提供重要依据.
Abstract:
To investigate the genetic variation level of Chinese barley varieties (lines) bred over recent years, the genetic diversity among 73 barley accessions from different growth regions were analyzed by 25 SSR markers on different locations of 7 linkage groups. 2-6 alleles of each SSR locus were detected with an average of 3.92 alleles/locus. The variation of polymorphism information content (PIC) of each SSR marker ranged between 0.252 and 0.780 with an average of 0.569, showing a relative high detection ability of genetic polymorphism by SSR markers. The genetic similarity coefficient (GS) of malting barley varieties (lines) from different regions varied from 0.661 to 0.767 with an average of 0.714, and GS of hulless barley varieties (lines) in Tibet plateau varied from 0.533 to 0.925 with an average of 0.699. 42 accessions of malting barley could be classified into 2 major groups at the level of GS 0.671, and 31 accessions of hulless barley could be classified into 5 groups at the level of GS 0.618. Majority of clusters/subclusters were found to contain accessions from the same geographic origins, showing a certain level of relationship between clustering and variety origin. In this study, SSR markers with high polymorphism were used to assess the genetic diversity of Chinese barley cultivars (lines). A poor genetic diversity still existed among these varieties (lines) and their genetic basis was rather narrow, which provided important reference for the selection and utilization of parental genotype in barley breeding project.

参考文献/References:

1 卢良恕. 中国大麦学[M]. 北京: 中国农业出版社, 1996. 124-130 [Lu LS. Barley in China [M]. Beijing: China Agricultural Press, 1996. 124-130]
2 Yang P, Liu XJ, Yang WY, Feng ZY. Diversity analysis of the developed qingke (hulless barley) cultivars representing different growing regions of the Qinghai-Tibet Plateau in China using sequence-related amplified polymorphism (SRAP) markers [J]. Afr J Biotechnol, 2010, 9 (50): 8530-8538
3 孙立军, 陆炜, 张京, 张万霞, 李富全, 陈丽华, 任有成. 中国大麦种质资源鉴定评价及其利用研究[J]. 中国农业科学, 1999, 32 (2): 24-31 [Sun LJ, Lu W, Zhang J, Zhang WX, Li FQ, Chen LH, Ren YC. Evaluation and utilization of barley germplasm resources of China [J]. Sci Agric Sin, 1999, 32 (2): 24-31]
4 冯宗云, 刘仙俊, 张义正, 凌宏清. 应用微卫星标记研究西藏野生大麦的遗传多样性[J]. 遗传学报, 2006, 33 (10): 917-928 [Feng ZY, Liu XJ, Zhang YZ, Ling HQ. Genetic diversity analysis of tibetan wild barley using SSR markers [J]. Acta Genet Sin, 2006, 33 (10): 917-928]
5 张大乐, 高红云, 李锁平. 利用 SSR 标记技术分析中国啤酒大麦品种的遗传多样性[J]. 西北农业学报, 2007, 16 (3): 72-76 [Zhang DL, Gao YH, Li SP. Analysis of genetic diversity on beer barleyvarieties in china by SSR [J]. Acta Agric Bor-occid Sin, 2007, 16 (3): 72-76]
6 刘志敏, 金能, 吕超, 黄祖六, 许如根. 大麦种质资源的SSR遗传多样性分析[J]. 麦类作物学报, 2011, 31 (5): 839-846 [Liu ZM, Jin N, Lü C, Huang ZL, Xu RG. Genetic diversity analysis of barley varieties by SSR [J]. J Triticeae Crops, 2011, 31 (5): 839-846]
7 张赤红, 张京, 赵会英, 张云霞, 李珍. 应用SSR标记对61个国家大麦遗传多样性的研究[J]. 植物遗传资源学报, 2008, 9: 15-19 [Zhang CH, Zhang J, Zhao HY, Zhang YX, Li Z. Study on genetic diversity of barely from 61 countries using SSR markers [J]. J Plant Genet Resour, 2008, 9: 15-19]
8 Struss D, Plieske J. The use of microsatellite markers for detection of geneticdiversity in barley populations. Theor Appl Genet, 1998, 97: 308-315
9 Weining S, Langridge P. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction [J]. Theor Appl Genet, 1991, 82: 209-216
10 Liu ZW, Biyashev RM, Maroof MAS. Development of simple sequence repeat DNA markers and their integration into a barley linkage map [J]. Theor Appl Genet, 1996, 93: 869 -76
11 许绍斌, 陶玉芬, 杨昭庆, 褚嘉宥. 简单快速的DNA银染和胶保存方法[J]. 遗传, 2002, 24: 335-336 [Xu SB, Tao YF, Yang ZQ, Chu JY. A simple and rapid methods used for silver staining and gel preservation [J]. Hereditas, 2002, 24 (3): 335-336]
12 Rohlf FJ. NTSYS-pc-numerical Taxonomy and Multivariate Analysis System [M]. New York: Version 1.6Exeter Soft-ware, 1992
13 Ramsay L, Macau lay M, Ivanissevich SD, MacLean K, Fuller J, Edwards KJ, Tuvesson S, Morgant M, Massari A. A simple sequence repeat-based linkage map of barley [J]. Genetics, 2000, 156: 1997-2005
14 Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits [J]. BMC Genomics, 2006, 7: 206
15 Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonuleases [J]. PNAS, 1979, 76: 5269-5273
16 孟凡磊, 强小林, 佘奎军, 唐亚伟, 胡银岗. 西藏主要农区青稞品种的遗传多样性分析[J]. 作物学报, 2007, 33 (11): 1910-1914 [Meng FL, Qiang XL, She KJ, Tang YW, Hu YG. Genetic diversity analysis among hulless barley varieties from the major agricultural areas of Tibet [J]. Acta Agron Sin, 2007, 33 (11): 1910-1914]
17 Simth JSC, Chin ECL, Shu H. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparison with data from RFLPs and pedigree [J]. Theor Appl Genet, 1997, 95: 163-173
18 张赤红, 张京. 大麦品种资源遗传多样性SSR标记评价[J]. 麦类作物学报, 2008, 28 (2): 214-219 [Zhang CH, Zhang J. Genetic diversity assessment of barley germplasm resources using SSR markers [J]. J Triticeae Crops, 2008, 28: 214-219]
19 Botstein D, White RL, Skolnick MH and Davis RW. Construction of a linkage map in man using restriction fragment poly morphism [J]. Am J Human Genet, 1980, 32: 314-331
20 蒋玮, 漆燕玲, 梁守翠. 不同类型啤酒大麦品种遗传多样性及遗传差异的SSR分析[J]. 作物杂志, 2012, 2: 76-80 [Jiang W, Qi YL, Liang SC. Analysis of genetic diversity and genetic difference on different types of malt barley by SSR [J]. Crops, 2012, 2: 76-80]
21 杨建明, 沈秋泉, 汪军妹, 朱靖环. 我国大麦生产、需求与育种对策[J]. 大麦科学, 2003, 1: 1-6 [Yang JM, Shen QQ, Wang JM, Zhu JH. Barley production,demand and breeding in China [J]. Barley Sci, 2003, 1: 1-6]
22 杨振华, 漆燕玲, 蒋玮. 甘啤系列啤酒大麦品种系与国外引进品种间遗传多样性的SSR分析[J]. 麦类作物学报, 2009, 29 (4): 592-598 [Yang ZH, Qi YL, Jiang W. Genetic diversity of ganpi series beer barley varieties( lines) and imported varieties by SSR [J]. J Triticeae Crops, 2009, 29 (4): 592-598]

相似文献/References:

[1]陈欣,余懋群,龙海,等.大麦EST-SSR分子标记开发及特征分析[J].应用与环境生物学报,2018,24(01):102.[doi: 10.19675/j.cnki.1006-687x.2017.03037]
 CHEN Xin,YU Maoqun,LONG Hai**,et al.Data mining and analysis for simple sequence repeats in expressed sequence tags from barley[J].Chinese Journal of Applied & Environmental Biology,2018,24(01):102.[doi: 10.19675/j.cnki.1006-687x.2017.03037]

备注/Memo

备注/Memo:
国家自然科学基金项目(30871527,30960196)、中国科学院院地合作项目(XBCD-2011-019)、中国科学院知识创新工程重要方向项目(KSCX2-EW-J-22)和四川省科技厅国际合作项目资助 Supported by the National Natural Science Foundation of China (Nos. 30871527, 30960196), the Academy-Locality Cooperation Project (No. XBCD-2011-019) and the Knowledge Innovation Project (No. KSCX2-EW-J-22) of the Chinese Academy of Science, and the International Joint Project of Science & Technology Department of Sichuan Province
更新日期/Last Update: 2013-02-26