|本期目录/Table of Contents|

[1]王占勤,李化山,汪金松,等.太岳山油松人工林生长季土壤呼吸监测频率[J].应用与环境生物学报,2014,20(02):268-274.[doi:10.3724/SP.J.1145.2014.00268]
 WANG Zhanqin,LI Huashan,WANG Jinsong,et al.Optimizing manual sampling frequency for estimating annual soil respiration in a Pinus tabulaeformis plantation during growth season of the Taiyue Mountain, China[J].Chinese Journal of Applied & Environmental Biology,2014,20(02):268-274.[doi:10.3724/SP.J.1145.2014.00268]
点击复制

太岳山油松人工林生长季土壤呼吸监测频率()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
20卷
期数:
2014年02期
页码:
268-274
栏目:
研究论文
出版日期:
2014-04-25

文章信息/Info

Title:
Optimizing manual sampling frequency for estimating annual soil respiration in a Pinus tabulaeformis plantation during growth season of the Taiyue Mountain, China
作者:
王占勤李化山汪金松郭华峰刘星张春雨赵秀海
1山西省太岳山国有林管理局 介休 031200 2北京林业大学森林资源与生态系统过程北京市重点实验室 北京 100083 3中国林业科学研究院森林生态环境与保护研究所 北京 100091 4山西省太岳山国有林管理局灵空山林场 沁源 046500
Author(s):
WANG Zhanqin LI Huashan WANG Jinsong GUO Huafeng LIU Xing ZHANG Chunyu ZHAO Xiuhai
1Taiyue Mountain National Forest Administration of Shanxi, Jiexiu 031200, China 2Key Laboratory for Forest Resources & Ecosystem Processes of Beijing Forestry University, Beijing 100083, China 3Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China 4Lingkong Mountain Tree Farm of Taiyue Mountain National Forest Administration of Shanxi, Qinyuan 046500, China
关键词:
土壤呼吸速率监测频率Q10值拟合效果油松人工林
Keywords:
soil respiration rate sampling frequency Q10 value fitting effect Pinus tabulaeformis plantation
分类号:
S714
DOI:
10.3724/SP.J.1145.2014.00268
文献标志码:
A
摘要:
土壤呼吸有着明显的时间变异,呈现小时、日、季节、年际的变化,对土壤呼吸制定最佳的监测频率非常必要. 为选取土壤呼吸的最佳监测频率,以太岳山油松人工林为研究对象,于2011-2012年5-10月测定土壤呼吸速率的动态变化,以每周2次(天)的观测数据作为长期定位观测土壤呼吸速率的数据(CK),依此区划为不同监测频率:每周1次(SF2)、每两周1次(SF4)、每月1次(SF8),并分析不同监测频率的土壤呼吸速率与对照相比产生的偏差以及对生长季土壤呼吸速率值的估计概率. 结果显示:油松人工林土壤呼吸速率季节变化明显,9:00-11:00土壤呼吸值与24 h日平均土壤呼吸值相关性最大(R2 = 0.978). 降低监测频率使土壤呼吸速率与土壤温湿度的拟合效果(R2)以及土壤呼吸速率对温度的敏感性指数Q10的波动范围呈扩大趋势. 随着监测频率的降低,所测的土壤呼吸速率与对照的离散程度呈增大趋势. 在给定精度下,随着监测频率的降低,所测的土壤呼吸速率对生长季土壤呼吸速率值估计概率呈下降趋势,2011、2012、2011-2012年SF2在5%精度下估计概率均为100%,而SF4在5%的精度下估计概率分别为50%、75%、100%,SF8则在5%的精度下估计概率依次为50%、62.5%、87.5%. 研究表明,整个生长季可使用9:00-10:00作为土壤呼吸速率测定代表性时段;对于单年观测期每周1次(天)的监测频率可以得到可靠的生长季土壤呼吸估算量(与对照相比偏差<5%),而对于两年观测期每两周1次(天)的监测频率可以得到可靠的生长季土壤呼吸估算量(与对照相比偏差<5%). 本研究结果为准确测定土壤呼吸并减少工作量提供了方法和依据.
Abstract:
Soil respiration is the major path through which CO2 fixed by vegetation returns to the atmosphere, therefore plays an important role in the carbon cycle of terrestrial ecosystems. Soil respiration exhibit pronounced hourly, daily, seasonal and interannual variability, which is controlled by temperature, moisture and substrate supply. Optimizing a manual sampling frequency for estimating the growth season soil respiration (Rs) is an important but unresolved issue. This study measured the diurnal, seasonal and interannual dynamics of soil respiration rate in the plantation forest of P. tabulaeformis during the growth season in 2011-2012. A sampling frequency of twice per week was set as a long-term soil respiration observed data (CK), then divided into different sampling frequencies: weekly (SF2), biweekly (SF4), and once every month (SF8). The differences between different sampling frequencies in the deviation of annual soil respiration and the probabilities of obtaining estimates of soil respiration at a given precision were analyzed. The results showed a strong seasonal dynamic pattern in soil respiration rate in the plantation forest of P.tabulaeformis, with Rs during 9:00-11:00 a.m. significantly correlated with diurnal mean Rs (R2 = 0.978). Decreasing measuring frequency expanded the fluctuation ranges of the fitting effect (R2) of correlation model between soil respiration rate and soil temperature, humidity and the temperature sensitivity of soil respiration Q10. The variances associated with the spread of % deviations observed increased with decreasing sampling frequency, but the probability of obtaining an estimate of annual Rs at a given precision showed an opposite trend. As the estimates rates of annual Rs within ±5% of CK with a 100% probability, the probability estimate of SF2, SF4, SF8 were 100%, 50%, 50% in 2011, 100%, 75%, 62.5% in 2012, and 100%, 100%, 87.5% in 2011-2012, respectively and orderly. We therefore concluded that Rs during 9:00-10:00 am could be regarded as the representative of daily averages. A weekly sampling across a year was capable of predicting the unbiased annual soil respiration; a biweekly sampling was suf?cient to obtain an unbiased multi-year mean annual soil respiration. Such ?ndings provide methods and standards for accurately determining soil respiration and reducing workload.

参考文献/References:

1 Davidson, EA, Janssens IA, Luo Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10 [J]. Global Change Biol, 2006, 12 (2): 154-164
2 Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO. Respiration as the main determinant of carbon balance in European forests [J]. Nature, 2000, 404 (6780): 861-865
3 Knohl A, Werner RA, Brand WA, Buchmann N. Short-term variations in 13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest [J]. Oecologia, 2005, 142 (1): 70-82
4 Misson L, Gershenson A, Tang J, McKay M, Cheng WX, Goldstein A. In?uences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest [J]. Tree Physiol, 2006, 26 (7): 833-844
5 Vargas R, Allen MF. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration [J]. New Phytol, 2008, 179 (2): 460-471
6 Luo Y, Zhou X. Soil Respiration and the Environment [M]. Amsterdam: Academic Press/Elsevier, 2006
7 Savage K, Davidson EA, Richardson AD, Hollinger DY. Three scales of temporal resolution from automated soil respiration measurements [J]. Agric For Meteorol, 2009, 149 (11): 2012-2021
8 Kuzyakov Y, Gavrichkova O. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls [J]. Global Change Biol, 2010, 16 (12): 3386-3406
9 Wang YD, Wang ZL, Wang HM, Guo CC, Bao WK. Rainfall pulse primarily drives litterfall respiration and its contribution to soil respiration in a young exotic pine plantation in subtropical China [J]. Can J Forest Res, 2012, 42 (4): 657-666
10 Wang YD, Li QK, Wang HM, Wen XF, Yang FT, Ma ZP, Liu YF, Sun XM, Yu GR. Precipitation frequency controls interannual variation of soil respiration by affecting soil moisture in a subtropical forest plantation [J]. Can J Forest Res, 2011, 41 (9): 1897-1906
11 Ryan MG, Law BE. Interpreting, measuring, and modeling soil respiration [J]. Biogeochemistry, 2005, 73 (1): 3-27
12 Irvine J, Law BE, Martin JG, Vickers D. Interannual variation in soil CO2 ef?ux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine [J]. Global Change Biol, 2008, 14 (12): 2848-2859
13 严俊霞, 秦作栋, 李洪建, 张义辉. 黄土高原地区柠条人工林土壤呼吸[J]. 林业科学, 2010, 46 (3): 1-8[Yan JX, Qin ZD, Li HJ, Zhang YH. Soil Respiration Characters in a Caragana Plantation in Loess Plateau Region [J]. Sci Silv Sin, 2010, 46 (3): 1-8]
14 Ruehr NK, Knohl A, Buchmann N. Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland [J]. Biogeochemistry, 2010, 98 (1-3): 153-170
15 Savage K, Davidson EA, Richardson AD. A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements [J]. Funct Ecol, 2008, 22 (6): 1000-1007
16 Savage K, Davidson EA. A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution [J]. J Exp Bot, 2003, 54 (384): 891-899
17 Edwards NT, Riggs JS. Automated Monitoring of Soil Respiration [J]. Soil Sci Soc Am J, 2003, 67 (4): 1266-1271
18 Flessa H, Ruser R, Schilling R, Loft?eld N, Munch JC, Kaiser EA, Beese F. N2O and CH4 ?uxes in potato fields: automated measurement, management effects and temporal variation [J]. Geoderma, 2002, 105 (3): 307-325
19 Davidson EA, Belk E, Boone RD. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biol, 1998, 4 (2): 217-227
20 Shi XH, Zhang XP, Yang XM, Mclaughlin NB, Liang AZ, Fan RQ. An appropriate time-window for measuring soil CO2 efflux: a case study on a Black soil in north-east China [J]. Acta Agric Scand B-S P, 2012, 62 (5): 449-454
21 陈云明, 梁一民, 程积民. 黄土高原林草植被建设地带性特征[J]. 植物生态学报, 2002, 26 (3): 339-345 [Chen YM, Liang YM, Chen JM. The zonal character of vegetation construction on loess plateau [J]. J Plant Ecol, 2002, 26 (3): 339-345]
22 Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH. Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation [J]. Plant Soil, 2011, 340 (1-2): 383-396
23 Flanagan LB, Sharp EJ, Letts MG. Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland [J]. Agric For Meteorol, 2013, 173: 40-52
24 Pang XY, Bao WK, Zhu B, Cheng WX. Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation [J]. Agric For Meteorol, 2013, 171: 57-64
25 唐正, 尹华军, 周晓波, 卫云燕, 刘庆. 夜间增温和施肥对亚高山针叶林土壤呼吸的短期影响[J]. 应用与环境生物学报, 2012, 18 (5): 713-721 [Tang Z, Yin HJ, Zhou XB, Wei YY, Liu Q. Short-term effects of night warming and nitrogen addition on soil respiration of subalpine coniferous, western Sichuan, China [J]. Chin J Appl Environ Biol, 2012, 18 (5): 713-721]
26 姚玉刚, 张一平, 于贵瑞, 沙丽清, 邓云, 谭正洪. 热带雨林土壤呼吸测定代表性时段研究[J]. 南京林业大学学报 (自然科学版), 2011, 35 (4): 74-78 [Yao YG, Zhang YP, Yu GR, Sha LQ, Deng Y, Tan ZH. Representative time selection analysis on daily average value of soil respiration in a tropical rain forest [J]. J Nanjing Forest Univ (Nat Sci), 2011, 35 (4): 74-78]
27 Bijracharya HM, Lal R, Kimble JM. Diurnal and seasonal CO2–C flux from soil as related to Erosion Phases in central Ohio [J]. Soil Sci Soc Am J, 2000, 64 (1): 286-293
28 王迎红. 陆地生态系统温室气体排放观测方法研究应用及结果比对分析[D]. 北京: 中国科学院, 2005 [Wang YH. Typical terrestrial ecosystems of China: method research, application and results discussion [D]. Beijing: Chinese Academy of Sciences, 2005]
29 胡正华, 李涵茂, 杨燕萍, 陈书涛, 李岑子, 申双和. 模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响[J]. 环境科学, 2010, 31 (8): 1726-1727 [Hu ZH, Li H M, Yang YP, Chen ST, Li CZ, Shen SH. Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest [J]. Environ Sci, 2010, 31 (8): 1726-1727 ]
30 Wang YD, Wang HM, Wang ZL, Zhang WJ, Guo CC, Wen XF, Liu YF. Optimizing manual sampling schedule for estimating annual soil CO2 ef?ux in a young exotic pine plantation in subtropical China [J]. Eur J Soil Biol, 2012, 52: 41-47
31 宋学贵, 胡庭兴, 鲜骏仁, 肖春莲, 刘文婷. 川西南常绿阔叶林土壤呼吸及其对氮沉降的响应[J]. 水土保持学报, 2007, 21 (4): 168-172 [Song XG, Hu TX, Xian JR, Xiao CL, Liu WT. Soil respiration and its response to simulated nitrogen deposition in evergreen broad-leaved forest, southwest Sichuan [J]. J Soil Water Convers, 2007, 21 (4): 168-172]
32 杨阔, 王传宽, 焦振. 东北东部 5 种温带森林的春季土壤呼吸[J]. 生态学报, 2010, 30 (12): 3155-3162 [Yang K, Wang CK, Jiao Z. Vernal soil respiration of five temperate forests in Northeastern China [J]. Acta Ecol Sin, 2010, 30 (12): 3155-3162]
33 Shi PL, Zhang XZ, Zhong ZM, Ouyang H. Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau [J]. Agric For Meteorol, 2006, 137 (3): 220-233
34 杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普. 土壤呼吸温度敏感性的影响因素和不确定性[J]. 生态学报, 2011, 31 (8): 2301-2311 [Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP. Impact factors and uncertainties of the temperature sensitivity of soil respiration [J]. Acta Ecol Sin, 2011, 31 (8): 2301-2311]
35 Liu Q, Edwards N, Post W, Gu L, Ledford J, Lenhart S. Temperature-independent diel variation in soil respiration observed from atemperate deciduous forest [J]. Global Change Biol, 2006, 12 (11): 2136-2145
36 Carbone M, Vargas R. Automated soil respiration measurements: new challenges, information and opportunities [J]. New Phytol, 2008, 177: 295-297
37 Zheng ZM, Yu GR, Sun XM, Li SG, Wang YS, Wang YH, Fu YL, Wang QF. Spatio-temporal variability of soil respiration of forest ecosystems in China: in?uencing factors and evaluation model [J]. Environ Manage, 2010, 46 (4): 633-642
38 Franzluebbers K, Franzluebbers AJ, Jawson MD. Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie [J]. Soil Sci Soc Am J, 2002, 66 (1): 254-262
39 Parkin TB, Kaspar TC. Temporal variability of soil carbon dioxide flux [J]. Soil Sci Soc Am J, 2004, 68 (4): 1234-1241

相似文献/References:

[1]刘保新,汪金松,康峰峰,等.太岳山油松人工林土壤呼吸对抚育强度的响应[J].应用与环境生物学报,2012,18(01):17.[doi:DOI: 10.3724/SP.J.1145.2012.00017]
 LIU Baoxin,WANG Jinsong,KANG Fengfeng,et al.Response of Soil Respiration in Pinus tabulaeformis Plantation to Tending Intensities in the Taiyue Mountain, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):17.[doi:DOI: 10.3724/SP.J.1145.2012.00017]
[2]金冠一,赵秀海,郭依秋.太岳山油松人工林干湿交替时期土壤呼吸特征[J].应用与环境生物学报,2012,18(06):904.[doi:10.3724/SP.J.1145.2012.00904]
 JIN Guanyi,ZHAO Xiuhai,GUO Yiqiu.Dynamics of Soil Respiration During Alternate Drying-wetting Period in Pinus tabulaeformis Plantation of the Taiyue Mountain, China[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):904.[doi:10.3724/SP.J.1145.2012.00904]
[3]左强,何怀江,赵秀海.改变碳源输入对蛟河红松阔叶混交林土壤呼吸的影响[J].应用与环境生物学报,2015,21(06):1136.[doi:10.3724/SP.J.1145.2015.04035]
 ZUO Qiang,HE Huaijiang,ZHAO Xiuhai.Influence of carbon input changes on the soil respiration in a mixed broadleaved-Korean pine forest in western foothill of Changbai Mountain[J].Chinese Journal of Applied & Environmental Biology,2015,21(02):1136.[doi:10.3724/SP.J.1145.2015.04035]

备注/Memo

备注/Memo:
国家林业公益性行业科研专项(201104009)和国家自然科学基金项目(31340022)资助
更新日期/Last Update: 2014-05-04