|本期目录/Table of Contents|

[1]房俊楠,雷娟,许力山,等.微生物发酵生产γ-聚谷氨酸研究进展[J].应用与环境生物学报,2018,24(05):1041-1049.[doi: 10.19675/j.cnki.1006-687x.2017.04006]
 FANG Junnan,LEI Juan,et al.Recent advances in poly-γ-glutamic acid production by microbial fermentation[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1041-1049.[doi: 10.19675/j.cnki.1006-687x.2017.04006]
点击复制

微生物发酵生产γ-聚谷氨酸研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1041-1049
栏目:
综述
出版日期:
2018-10-25

文章信息/Info

Title:
Recent advances in poly-γ-glutamic acid production by microbial fermentation
作者:
房俊楠雷娟许力山姬高升刘杨闫志英
1中国科学院成都生物研究所,中国科学院环境与应用微生物重点实验室 成都 610041 2环境微生物四川省重点实验室 成都 610041 3四川省成都市第七中学 成都 610041 4湖南畜禽安全生产协同创新中心 长沙 410128
Author(s):
FANG Junnan1 2 LEI Juan3 XU Lishan1 2 JI Gaosheng1 2 LIU Yang1 2 & YAN Zhiying1 2 4**
1 Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China 3 Chengdu No.7 High School, Chengdu 610041, China 4 Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
关键词:
γ-聚谷氨酸菌种选育条件优化发酵方式分离方法
Keywords:
poly-γ-glutamic acid strain selection condition optimization fermentation way separation method
分类号:
TQ922
DOI:
10.19675/j.cnki.1006-687x.2017.04006
摘要:
天然存在的高分子生物聚合物γ-聚谷氨酸(γ-PGA)因具生物可降解性、无毒性和非免疫原性而被广泛应用于食品、工业和医疗等领域,主要由微生物发酵制备;当前γ-聚谷氨酸的微生物发酵制备技术在我国基本上处于实验室研究阶段,距离大规模的工业化生产还有很大差距. 综述γ-聚谷氨酸的高产菌株选育,包括分离筛选新的γ-PGA生产菌株以及对原有的菌株进行遗传诱变和基因操作、合成机制;发酵条件优化,包括对培养基的组成成分(碳源、氮源和金属离子等)和发酵因素(温度、pH和溶氧等)进行优化;发酵方式选择,包括常规的液体发酵方式以及以工农业废弃物为原料的固体发酵方式;分离方法的建立,包括有机溶剂沉淀法和金属离子沉淀法的比较等. 最后对γ-PGA相对分子质量的调控、生产成本、分离纯化、具体合成机制和大规模生产进行展望,以期为γ-聚谷氨酸工业化生产及在我国进一步的推广应用提供理论支撑. (图2 表5 参88)
Abstract:
Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer that is mainly produced by microbial fermentation and is widely used in the food, industrial, and medical fields due to its biodegradable, non-toxic, and non-immunogenic properties. At present, the microbial fermentation of γ-PGA is still limited to the levels that can be achieved in the laboratory, and it is not yet produced wholesale at an industrial scale in China. Given the likely development and application of γ-PGA production in the future, this study performed strain selection, including the separation of new γ-PGA producers and genetic mutagenesis and manipulation of the original strains, to obtain microbial strains that could produce γ-PGA by fermentation. These strains were then used to assess the mechanisms of γ-PGA synthesis, as well as the conditions that optimized these mechanisms, including the optimal medium composition (carbon sources, nitrogen sources, metallic ions, etc.) and fermentation factors (temperature, pH, dissolved oxygen, etc.). Fermentation methods, including traditional submerged fermentation and solid-state fermentation with agroindustrial residues, were then examined, as were separation methods, among which the organic solvent-induced precipitation and metal ion-induced precipitation methods were compared and contrasted. Finally, the molecular weight, fermentation cost, separation methods, specific synthesis mechanism, and large-scale production of γ-PGA were discussed, with the aim of providing a theoretical basis for the industrial production and further application of γ-PGA in China.

参考文献/References:

1 Shih IL, Van YT. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications [J]. Bioresour Technol, 2001, 79 (3): 207-225
2 Ashiuchi M, Kuwana E, Komatsu K, Soda K, Misono H. Differences in effects on DNA gyrase activity between two glutamate racemases of Bacillus subtilis, the poly-gamma-glutamate synthesis-linking Glr enzyme and the YrpC (MurI) isozyme [J]. FEMS Microbiol Lett, 2003, 223 (2): 221-225
3 Manocha B, Margaritis A. Production and characterization of gamma-poly glutamic acid nanoparticles for controlled anticancer drug release [J]. Crit Rev Biotechnol, 2008, 28 (2): 83
4 Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications [J]. Chem Rec, 2005, 5 (6): 352
5 Buescher JM, Margaritis A. Microbial biosynthesis of poly glutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries [J]. Crit Rev Biotechnol, 2007, 27 (1): 1-19
6 Carvajalzarrabal O, Nolascohipólito C, Barradasdermitz DM, Haywardjones PM, Aguilaruscanga MG, Bujang K. Treatment of vinasse from tequila production using polyglutamic acid [J]. J Environ Manage, 2012, 95 (2): S66-S70
7 Taniguchi M, Kato K, Shimauchi A, Ping X, Nakayama H, Fujita K, Tanaka T, Tarui Y, Hirasawa E. Proposals for wastewater treatment by applying flocculating activity of cross-linked poly-γ-glutamic acid [J]. J Biosci Bioeng, 2005, 99 (3): 245-251
8 Bajaj I, Singhal R. Poly (glutamic acid) - an emerging biopolymer of commercial interest [J]. Bioresour Technol, 2011, 102 (10): 5551-5561
9 田春华, 冀志霞, 吴广涛, 陈守文. 苏云金芽胞杆菌聚γ-谷氨酸-明胶微胶囊剂制备及其抗逆性[J]. 应用与环境生物学报, 2009, 15 (3): 367-370 [Tian CH, Ji ZX, Wu GT, Chen SW. Formulation and stress resistance of poly γ-glutamate-gelatin microcapsulation of Bacillus thuringiensis [J]. Chin J Appl Environ Biol, 2009, 15 (3): 367-370
10 Mesnage S, Tosi-Couture E, Gounon P, Mock M. The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis [J]. J Bacteriol, 1998, 180: 52-60
11 Bovarnick M. The formation of extracellular D-glutamic acid polypeptide by Bacillus Subtilis [J]. J Biol Chem, 1942, 145 (2): 415-424
12 Jaehoon J, Jinnam K, Youngjung W, Hwawon R. The statistically optimized production of poly (γ-glutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3 [J]. Bioresour Technol, 2010, 101 (12): 4533-4539
13 Yoon SH, Do JH, Lee SY, Chang HN. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis [J]. Biotechnol Lett, 2000, 22 (7): 585-588
14 Bajaj IB, Lele SS, Singhal RS. A statistical approach to optimization of fermentative production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 [J]. Bioresour Technol, 2009, 100 (2): 826-832
15 杨革, 陈坚, 曲音波, 伦世仪. 细菌聚γ-谷氨酸表征的研究[J]. 高分子材料科学与工程, 2002, 18 (4): 133-136 [Yang G, Chen J, Qu YB, Lun SYL. Characterization of poly-γ-glutamic acid by bacterial [J]. Sci Eng Polr Mat, 2002, 18 (4): 133-136]
16 张业伟, 魏雪团, 胡中波, 罗明芳.地衣芽孢杆菌P-104发酵生产γ-聚谷氨酸条件优化[J]. 过程工程学报, 2012, 12 (2): 123-127 [Zhang YW, Wei XT, Hu ZB, Luo MF. Optimization of γ-Polyglutamic Acid Production by Bacillus licheniformis P-104 [J]. J Proc Eng, 2012, 12 (2): 123-127
17 Wu Q, Xu H, Zhang L, Yao J, Ouyang P. Production, purification and properties of γ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 [J]. J Mol Cat B Enzym, 2006, 43 (1): 113-117
18 Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S. Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives [J]. Biotechnol Biof, 2016, 9:134-147
19 Peng Y, Jiang B, Zhang T, Mu W, Miao M, Hua Y. High-level production of poly (γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus [J]. Proc Biochem, 2015, 50 (3): 329-335
20 Ashiuchi M, Shimanouchi K, Horiuchi T, Kamei T, Misono H. Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214 [J]. Biosci Biotechnoly Biochem, 2006, 70 (7): 1794-1797
21 Ito Y, Tanaka T, Ohmachi T, Asada Y. Glutamic acid independent production of poly (γ-glutamic acid) by Bacillus subtilis TAM-4 [J]. Biosci Biotechnol Biochem, 1996, 60 (8): 1239-1242
22 Cao M, Geng W, Liu L, Song C, Xie H, Guo W, Jin Y, Wang S. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes [J]. Bioresour Technol, 2011, 102 (5): 4251-4257
23 Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H. Isolation of Bacillus subtilis ( chungkookjang ), a poly- γ -glutamate producer with high genetic competence [J]. Appl Microbiol Biotechnol, 2001, 57 (5): 764-769.
24 Wu Q, Xu H, Xu L, Ouyang P. Biosynthesis of poly (γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly (γ-glutamic acid) [J]. Proc Biochem, 2006, 41 (7): 1650-1655
25 Shih IL, Van YT. The production of poly (γ-glutamic acid) from microorganisms and its various applications [J]. Bioresour Technol, 2001, 79 (3): 207-225
26 Cromwick AM, Gross RA. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly (glutamic acid) formation [J]. Int J Biol Macromol, 1995, 17 (5): 259-267
27 Ashiuchi M, Soda K, Misono H. A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli clone cells [J]. Biochem Biophys Resour Commun, 1999, 263 (1): 6-16
28 杜沛, 宴正, 陈双喜. γ-聚谷氨酸高产菌株的选育及发酵条件优化[J]. 河南大学学报, 2010, 40 (2): 179-184 [Du P, Yan Z, Chen SX. Breeding of poly-gamma-glutamic acid high-yield strain and optimization of fermentation conditions [J]. J Henan Univ, 2010, 40 (2): 179-184]
29 Lee NR, Park SB, Lee SM, Go TH, Hwang DY, Kim DS, Jeong SY, Son HJ. Characteristics of white soybean chungkookjang fermented by Bacillus subtilis D7 [J]. Biotechnol Lett, 2013, 23 (4): 234-245
30 Ju WT, Song YS, Jung WJ, Park RD. Enhanced production of poly-gamma-glutamic acid by a newly-isolated Bacillus subtilis [J]. Biotechnol Lett, 2014, 36 (11): 2319-2324
31 徐艳萍, 王树英, 李华钟, 陈坚. 聚γ-谷氨酸高产突变株的选育及摇瓶发酵条件[J]. 食品与生物技术学报, 2004, 23 (5): 6-10 [Xu YP, Wang SY, Li HZ, Chen J. Breeding of high-yield mutant of poly-γ-glutamic acid and conditions of shake flask fermentation [J]. J Food Sci Biotechnol, 2004, 23 (5): 6-10
32 Rubinder K, Chadha BS, Singh N, Saini HS, Singh S. Amylase hyperproduction by deregulated mutants of the thermophilic fungus Thermomyces lanuginosus [J]. J Ind Microbiol Biotechnol, 2002, 29 (2): 70-74
33 Ellaiah P, Prabhakar T, Ramakrishna B, Taleb AT, Adinarayana K. Strain improvement of Aspergillus niger for the production of lipase [J]. Indian J Microbiol, 2002, 42:151-153
34 张瑞, 周俊, 王舒雅, 沈立真, 陈怡露, 郑涛, 雍晓雨. 产γ-聚谷氨酸菌株的诱变选育及其种子液工艺优化[J]. 生物加工过程, 2015, 1: 47-53 [Zhang R, Zhou J, Wang YS, Shen LZ, Chen YL, Zheng T, Yong XY. Mutation breeding of γ-poly glutamic acid producing strain and optimization of seed liquid process [J]. Bioprocess, 2015, 1: 47-53
35 Jiang F, Qi G, Ji Z, Zhang S, Liu J, Ma X, Chen S. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-gamma-glutamic acid [J]. Biotechnol Lett, 2011, 33 (9): 1837-1840
36 Zhang W, He Y, Gao W, Feng J, Cao M, Yang C, Song C, Wang S. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3 [J]. J Ind Microbiol Biotechnol, 2015, 42 (2): 297-305
37 Feng J, Gao W, Gu Y, Zhang W, Cao M, Song C, Zhang P, Sun M, Yang C, Wang S. Functions of poly-gamma-glutamic acid (gamma-PGA) degradation genes in gamma-PGA synthesis and cell morphology maintenance [J]. Appl Microbiol Biotechnol, 2014, 98 (14): 6397-6407
38 Shi F, Xu Z, Cen P. Optimization of γ-polyglutamic acid production by Bacillus subtilis ZJU-7 using a surface-response methodology [J]. Biotechnol Bioproc Eng, 2006, 11 (3): 251-257
39 Jung DY, Jung S, Yun JS, Kim JN, Wee YJ, Jang HG, Ryu HW. Influences of cultural medium component on the production of poly (γ-glutamic acid) by Bacillus sp. RKY3 [J]. Biotechnol Bioproc Eng, 2005, 10 (4): 289-295
40 Jiang Y, Tang B, Xu Z, Liu K, Xu Z, Feng X, Xu H. Improvement of poly-gamma-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2 [J]. Bioresour Technol, 2016, 218: 360-366
41 曹旭. γ-聚谷氨酸的异源表达及发酵工艺研究[D]. 杭州: 浙江大学, 2007 [Cao X. Heterologous expression and fermentation process of γ-polyglutamic acid [D]. Hangzhou: Zhejiang University, 2007
42 Crescenzi V, Dalagni M, Dentini M, Mattei B. Aqueous solution properties of bacterial poly-γ-D-glutamate [J]. J Appl Polym Sci, 2009, 34 (3): 999-1011
43 Zhang W, He Y, Gao W, Feng J, Cao M, Yang C, Song C, Wang S. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3 [J]. J Ind Microbiol Biotechnol, 2015, 42 (2): 297-305
44 Wu Q, Xu H, Ying H, Ouyang P. Kinetic analysis and pH-shift control strategy for poly (γ-glutamic acid) production with Bacillus subtilis CGMCC 0833 [J]. Biocheml Eng J, 2010, 50 (1-2): 24-28
45 Tang B, Lei P, Xu Z, Jiang Y, Xu Z, Liang J, Feng X, Xu H. Highly efficient rice straw utilization for poly-(gamma-glutamic acid) production by Bacillus subtilis NX-2 [J]. Bioresour Technol, 2015, 193: 370-376
46 Richard A, Margaritis A. Rheology, oxygen transfer, and molecular weight characteristics of poly (glutamic acid) fermentation by Bacillus subtilis [J]. Biotechnol Bioeng, 2003, 82 (3): 299-305
47 Su Y, Li X, Liu Q, Hou Z, Zhu X, Guo X, Ling P. Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis [J]. Bioresour Technol, 2010, 101 (12): 4733-4736
48 Wu Q, Xu H, Zhang L, Yao J, Ouyang P. Production, purification and properties of γ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 [J]. J Molecul Cat B Enzym, 2006, 43 (1-4): 113-117
49 Zhang D, Feng X, Li S, Chen F, Xu H. Effects of oxygen vectors on the synthesis and molecular weight of poly (γ-glutamic acid) and the metabolic characterization of Bacillus subtilis NX-2 [J]. Proc Biochem, 2012, 47 (12): 2103-2109
50 Feng X, Tang B, Jiang Y, Xu Z, Lei P, Liang J, Xu H. Efficient production of poly-γ-glutamic acid from cane molasses by Bacillus subtilis NX-2 immobilized on chemically modified sugarcane bagasse [J]. J Chem Technol Biotechnol, 2016, 91 (7): 2085-2093
51 Wu Q, Xu H, Liang J, Yao J. Contribution of glycerol on production of poly (gamma-glutamic acid) in Bacillus subtilis NX-2 [J]. Appl Biochem Biotechnol, 2010, 160 (2): 386-392
52 Mitsunaga H, Meissner L, Buchs J, Fukusaki E. Branched chain amino acids maintain the molecular weight of poly (gamma-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation [J]. J Biosci Bioeng, 2016, 122 (4): 400-405
53 Bajaj IB, Singhal RS. Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors [J]. Appl Biochem Biotechnol, 2009, 159 (1): 133-141
54 Shih IL, Wu PJ, Shieh CJ. Microbial production of a poly (γ-glutamic acid) derivative by Bacillus subtilis [J]. Proc Biochem, 2005, 40 (8): 2827-2832
55 Xiong C, Shouwen C, Ming S, Ziniu Y. Medium optimization by response surface methodology for poly-gamma-glutamic acid production using dairy manure as the basis of a solid substrate [J]. Appl Microbiol Biotechnol, 2005, 69 (4): 390-396
56 Bajaj I, Singhal R. Poly (glutamic acid)-an emerging biopolymer of commercial interest [J]. Bioresour Technol, 2011, 102 (10): 5551-5561
57 Xiong C, Shouwen C, Ming S, Ziniu Y. Medium optimization by response surface methodology for poly-gamma-glutamic acid production using dairy manure as the basis of a solid substrate [J]. Appl Microbiol Biotechnol, 2005, 69 (4): 390-396
58 Bajaj IB, Lele SS, Singhal RS. Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 in solid state fermentation [J]. J Ind Microbiol Biotechnol, 2008, 35 (12): 1581-1586
59 Pandey A. Solid-state fermentation [J]. Biochem Eng J, 2003, 13 (2): 81-84
60 Liu F, Tian W, Li L, Yang X, Shen B, Shen Q. Optimization of solid-state fermentation conditions for antagonistic Bacillus subtilis SQR9 producing bio-organic fertilizer [J]. Chin J Appl Environ Biol, 2013, 19 (1): 90-95
61 Cromwick AM, Gross RA. Investigation by NMR of metabolic routes to bacterial γ-poly (glutamic [J]. Canadn J Microbiol, 2011, 41 (10): 902-909
62 Goto A, Kunioka M. Biosynthesis and Hydrolysis of Poly (gamma-glutamic acid) from Bacillus subtilis IF03335 [J]. J Agric Chem Soc Jpn, 1992, 56 (7): 1031-1035
63 Shih IL, Van YT, Chang YN. Application of statistical experimental methods to optimize production of poly (γ-glutamic acid) by Bacillus licheniformis CCRC 12826 [J]. Enz Microb Technol, 2002, 31 (3): 213-220
64 Cesaro AD, Silva SBD, Ayub MaZ. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53 [J]. J Ind Microbiol Biotechnol, 2014, 41 (9): 1375-1382
65 Bajaj IB, Singhal RS. Sequential optimization approach for enhanced production of poly (gamma-glutamic acid) from newly isolated Bacillus subtilis [J]. Food Technol Biotechnol, 2009, 47 (3): 313-322
66 Xu H, Jiang M, Li H, Lu D, Ouyang P. Efficient production of poly (γ-glutamic acid) by newly isolated Bacillus subtilis NX-2 [J]. Proc Biochem, 2005, 40 (2): 519-523
67 Ito Y, Tanaka T, Ohmachi T, Asada Y. Glutamic acid independent production of poly (γ-glutamic acid) by Bacillus subtilis TAM-4 [J]. J Agric Chem Soc Jpn, 1996, 60 (8): 1239-1242
68 Abdel-Fattah YR, Soliman NA, Berekaa MM. Application of Box-Behnken design for optimization of poly-γ-glutamic acid production by Bacillus licheniformis SAB-26 [J]. Resour J Microbiol, 2007, 2 (9): 664-670
69 Chen X, Chen S, Sun M, Yu Z. High yield of poly-gamma-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate [J]. Bioresour Technol, 2005, 96 (17): 1872-1879
70 Yao D, Ji Z, Wang C, Qi G, Zhang L, Ma X, Chen S. Co-producing iturin A and poly-gamma-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10 [J]. World J Microbiol Biotechnol, 2012, 28 (3): 985-991
71 吴永平. 枯草芽胞杆菌固态发酵产聚-γ-谷氨酸的工艺优化[D]. 武汉: 华中农业大学, 2007 [Wu YP. Optimization of solid state fermentation of poly-γ-glutamaic acid by Bacillus subtilis ME714 [D]. Wuhan: Huazhong Agricultural University, 2007
72 吴永平, 周景文, 陈守文, 喻子牛. 枯草芽孢杆菌ME714产聚γ-谷氨酸固态发酵培养基的优化溶氧及pH对地衣芽孢杆菌合成聚γ-谷氨酸的影响[J]. 应用与环境生物学报, 2007, 13 (5): 713-716 [Wu YP, Zhou JW, Chen SW, Yu ZN. Optimization of solid-state fermentation medium for poly-γ-glutamic acid production by Bacillus subtilis ME714 [J]. Chin J Appl Environ Biol, 2007, 13 (5): 713-716
73 Nie G, Zhu Z, Liu F, Nie Z, Ye Y, Yue W. Co-production of nattokinase and poly (γ-glutamic acid) under solid-state fermentation using soybean and rice husk [J]. Brazil Arch Biol Technol, 2015, 58 (5): 718-724
74 Tang B, Xu H, Xu Z, Xu C, Xu Z, Lei P, Qiu Y, Liang J, Feng X. Conversion of agroindustrial residues for high poly (gamma-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation [J]. Bioresour Technol, 2015, 181: 351-354
75 Wang Q, Chen S, Zhang J, Sun M, Liu Z, Yu Z. Co-producing lipopeptides and poly-gamma-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects [J]. Bioresour Technol, 2008, 99 (8): 3318-3323
76 Yong X, Raza W, Yu G, Ran W, Shen Q, Yang X. Optimization of the production of poly-gamma-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates [J]. Bioresour Technol, 2011, 102 (16): 7548-7554
77 Goto A, Kunioka M. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IF03335 [J]. Biosci Biotechnol Biochem, 1992, 56 (7): 1031
78 Mclean RJ, Beauchemin D, Clapham L, Beveridge TJ. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945 [J]. Appl Environ Microbiol, 1990, 56 (12): 3671
79 Pérez-Camero G, Congregado F, Bou JJ, Mu?oz-Guerra S. Biosynthesis and ultrasonic degradation of bacterial poly (γ-glutamic acid) [J]. Biotechnol Bioeng, 1999, 63 (1): 110
80 Birrer GA, Cromwick AM, Gross RA. Gamma-poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies [J]. Internatl J Biol Macromol, 1994, 16 (5): 265-275
81 Manocha B, Margaritis A. A novel Method for the selective recovery and purification of gamma-polyglutamic acid from Bacillus licheniformis fermentation broth [J]. Biotechnol Prog, 2010, 26 (3): 734-742
82 Beveridge TJ, Murray RG, Beveridge TJ, Murray RG. Uptake and retention of metals by cell walls of Bacillus subtilis [J]. J Bacteriol, 1976, 127 (3): 1502-1518
83 Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis [J]. J Bacter, 1980, 141 (141): 876-887
84 Beveridge TJ. Ultrastructure, chemistry, and function of the bacterial wall [J]. Intern Review of Cytol, 1981, 72 (72): 229-317
85 Beveridge TJ, Forsberg CW, Doyle RJ. Major sites of metal binding in Bacillus licheniformis walls [J]. J Bacteriol, 1982, 150 (3): 1438
86 Beveridge TJ, Fyfe WS. Metal fixation by bacterial cell walls [J]. Canad J Earth Sci, 2011, 22 (12): 1893-1898
87 Ferris FG, Beveridge TJ. Site specificity of metallic ion binding in Escherichia coli K-12 lipopolysaccharide [J]. Canad J Microbiol, 1986, 32 (1): 52-55
88 Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ. Metal interactions with microbial biofilms in acidic and neutral pH environments [J]. Appl Environ Microbiol, 1989, 55 (5): 1249-1257

相似文献/References:

[1]杨敏,杨顺楷.化学诱变结合结构类似物法选育高苯丙氨酸解氨酶菌种[J].应用与环境生物学报,1999,5(05):525.
 YANG Min,et al..Breeding for high Lphenylalanine ammonialyase containing strains by means of chemical mutagenesis combined with structure analogs[J].Chinese Journal of Applied & Environmental Biology,1999,5(05):525.

更新日期/Last Update: 2018-10-25