|本期目录/Table of Contents|

[1]丁俊美,李国涛,黄遵锡.微生物细胞色素P450酶及其对异源物质的代谢研究进展[J].应用与环境生物学报,2018,24(03):657-662.[doi:10.19675/j.cnki.1006-687x.2017.06026]
 DING Junmei,LI Guotao & HUANG Zunxi**.Research progress in microbial cytochrome P450 and xenobiotic metabolism[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):657-662.[doi:10.19675/j.cnki.1006-687x.2017.06026]
点击复制

微生物细胞色素P450酶及其对异源物质的代谢研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
657-662
栏目:
综述
出版日期:
2018-06-30

文章信息/Info

Title:
Research progress in microbial cytochrome P450 and xenobiotic metabolism
作者:
丁俊美李国涛黄遵锡
云南师范大学生物能源持续开发利用教育部工程中心 昆明 650500
Author(s):
DING Junmei LI Guotao & HUANG Zunxi**
Engineering Research Center of Sustainable Development and Utilization of Biomall Energy, Yunnan Normal University, Kunming 650500, China
关键词:
细胞色素P450生物修复异源物质酶工程
Keywords:
cytochrome P450 bioremediation xenobiotic enzyme engineering
分类号:
X172 : Q55
DOI:
10.19675/j.cnki.1006-687x.2017.06026
摘要:
细胞色素P450是一类广泛存在于动植物和微生物中的亚铁血红素-硫醇盐蛋白超家族,参与外源物质如药物、除草剂、杀虫剂和许多持久性难降解有机污染物等的生物氧化和降解. 基于近年来文献综述P450酶的命名及分类、结构和催化机制,并总结微生物来源的P450酶在代谢和降解异源物质方面取得的研究进展. P450基因超家族主要依赖于氨基酸序列一致性进行统一命名和分类;P450酶结构虽较为保守,但其对底物的识别位点缺乏保守性,是构成其催化多样性的结构基础;细菌和真菌来源的部分P450酶能够代谢和降解异源物质,如多环芳烃、除草剂等,但效率较低,实际应用可能性较小. 未来结合各种组学,需继续挖掘高效降解异源物质的P450酶资源,并对已有对异源物质有降解作用的P450酶进行蛋白分子改造,提高其活性并实现污染环境的生物修复. (图2 参49)
Abstract:
Cytochrome P450 (CYP450s) is a type of heme-mercaptide protein superfamily, which is distributed widely in animals, plants, and microorganisms. CYP450s can oxidize and degrade many exogenous compounds such as drugs, herbicides, pesticides, some persistent organic pollutants, and so on. Based on recent researches, this paper reviews the nomenclature, classification, structure, and catalytic mechanism of P450 enzymes, and summarizes the research progresses in the metabolism and biodegradation of xenobiotics using P450 enzymes from microorganisms. The nomenclature and classification of the P450 gene superfamily mainly rely on the similarities of amino acid sequences. Although the structures of P450 are conserved, their recognition sites towards to the substrates are variable. This is also the structural basis for the catalytic diversities of P450 enzymes. Few P450 enzymes from bacteria and fungi can metabolize and degrade xenobiotics such as polycyclic aromatic hydrocarbons, herbicides, and so on. However, these P450 enzymes are less likely be used in practical applications because of their low catalytic activities. In the future, more P450 enzymes with high degradable efficiencies towards xenobiotics are needed to be obtained using multiple omics tools or modifying the existing P450 enzymes, to achieve the bioremediation of the environment.

参考文献/References:

1. Girvan HM, Munro AW. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology [J]. Curr Opin Chem Biol, 2016, 31: 136-145
2. Klingenberg M. Pigments of rat liver microsomes [J]. Arch Biochem Biophys, 1958, 75 (2): 376-386
3. 李莉. 污泥及土壤中有毒有机污染物的离体生物毒性效应研究[D]. 新乡: 河南师范大学, 2012 [Li L. In vitro toxicity of toxic organic pollutants in sewage sludge and soil [D]. Xinxiang: Henan Normal University, 2012]
4. Schroer K, Kittelmann M, Lutz S. Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis [J]. Biotechnol Bioeng, 2010, 106 (5): 699-706
5. 安俊峰, 王运浩, 侯鑫. 鸡细胞色素P450 1A5的原核表达与活性重组[J]. 生物技术通报, 2012, 6: 94-98 [An JF, Wang YH, Hou X. Prokaryotic expression and recombinant activity of chicken cytochrome P450 1A5 [J]. Biotechnol Bull, 2012, 6: 94-98]
6. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhave E. Xenomic networks variability and adaptation traits in wood decaying fungi [J]. Microbiol Biotechnol, 2013, 6 (3): 248-263
7. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O. The P450 superfamily: update on new sequence, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature [J]. DNA Cell Biol, 1993, 12 (1): 1-51
8. Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450 [J]. Toxicol, 2017, 375: 10-27
9. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity [J]. Chem Res Toxicol, 2001, 14 (6): 611-650
10. Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC, Guengerich FP. Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2) [J]. J Biol Chem, 2007, 282 (24): 17486-17500
11. Tiedje C, Holland DG, Just U, Hofken T. Proteins involved in sterol synthesis interact with Ste20 and regulate cell polarity [J]. J Cell Sci, 2007, 120: 3613-3624
12. Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ. Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization [J]. J Biol Chem, 2002, 277 (31): 27725-27732
13. Puchkaev AV, Ortiz de Montellano PR. The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H dependent cytochrome P450 system [J]. Arch Biochem Biophys, 2005, 434 (1): 169-177
14. Jackson CJ, Lamb DC, Marczylo TH, Warrilow AG, Manning NJ, Lowe DJ, Kelly DE, Kelly SL. A novel sterol 14a-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily [J]. J Biol Chem, 2002, 277 (49): 46959-46965
15. Chong CS, Sabir DK, Lorenz A, Bontemps C, Andeer P, Stahl DA, Strand SE, Rylott EL, Bruce NC. Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine [J]. Appl Environ Microbiol, 2014, 80 (21): 6601-6610
16. Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL. A self sufficient cytochrome P450 with a primary structural organisation that includes flavin domain and a (2Fe-2S) redox center [J]. J Biol Chem, 2003, 278 (49): 48914-48984
17. Wen LP, Fulco AJ. Cloning of the gene encoding a catalytically self-sufficient cytochrome P450 fatty-acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) hosts [J]. J Biol Chem, 1987, 262 (14): 6676-6682
18. Tomura D, Obika K, Fukamizu A, Shoun I. Nitric oxide reductase cytochrome P-450 gene, CYP55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli [J]. J Biochem, 1994, 116 (1): 88-94
19. Song WC, Funk CD, Brash AR. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialised for the metabolism of fatty acid hydroperoxides [J]. Proc Natl Acad Sci USA, 1993, 90 (18): 8519-8523
20. Guengerich FP, Waterman MR, Egli M. Recent Structural Insights into Cytochrome P450 Function [J]. Trends Pharmacol Sci, 2016, 37 (8): 625-640
21. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J. The 2.6-? crystal structure of Pseudomonas putida cytochrome P-450 [J]. J Biol Chem, 1985, 260 (30): 16122-16130
22. Guengerich FP. Human Cytochrome P450 Enzymes [M]//Cytochrome P450. Springer International Publishing, 2015.
23. 李众, 张伟, 李盛英. 细胞色素P450酶与微生物药物创制[J]. 微生物学报, 2016, 56 (3): 496-515 [Li Z, Zhang W, Li SY. Cytochrome P450 enzymes and microbial drug development [J]. Acta Microbiol Sin, 2016, 56 (3): 496-515]
24. Kelly DE, Kra?evec N, Mullins J, Nelson DR. The CYPome (cytochrome P450 complement) of Aspergillus nidulans [J]. Fungal Genet Biol, 2009, 46 (1): S53-S61
25. Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR, Kell DB, Kelly DE, Kelly SL. The cytochrome P450 complement(CYPome) of Streptomyces coelicolor A3 (2) [J]. J Biol Chem, 2002, 277 (27): 24000-24005
26. Warrilow A, Ugochukwu C, Lamb D, Kelly D, Kelly S. Expression and characterization of CYP51, the ancient sterol 14-demethylase activity for cytochromes P450(CYP), in the white-rot fungus Phanerochaete chrysosporium [J]. Lipids, 2008, 43 (12): 1143-1153
27. Ide M, Ichinose H, Wariishi H. Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta [J]. Arch Microbiol, 2012, 194 (4): 243-253
28. Kelly SL, Lamb DC, Jackson CJ, Warrilow AG, Kelly DE. The biodiversity of microbial cytochromes P450 [J]. Adv Microb Physiol, 2003, 47: 131-186
29. Hernández-Martínez F, Briones-Roblero CI, Nelson DR, Rivera-Orduna FN, Zuniga G. Cytochrome P450 complement(CYPome) of Candida oregonensis, a gut-associated yeast of bark beetle, Dendroctonus rhizophagus [J]. Fungal Biol, 2016, 120 (9): 1077-1089
30. Van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases [J]. Appl Environ Microbiol, 2006, 72 (1): 59-65
31. Wang F, Zhou J, Li ZK, Dong WL, Hou Y, Huang Y, Cui ZL. Involvement of the cytochrome P450 system EthBAD in the N-dedthoxymethylation of acetochlor by Rhodococcus sp. strain T3-1 [J]. Appl Environ Microbiol, 2015, 81 (6): 2182-2188
32. Malandain C, Fayolle-Guichard F, Vogel TM. Cytochromes P450-mediated degradation of fuel oxygenates by environmental isolates [J]. FEMS Microbiol Ecol, 2010, 72 (2): 289-296
33. Tsotsou GE, Sideri A, Goyal A, Di Nardo G, Gilardi G. Identification of mutant Asp251Gly/Gln307His of cytochrome P450 BM3 for the generation of metabolites of diclofenac, ibuprofen and tolbutamide [J]. Chemistry, 2012, 18 (12): 3582-3588
34. Minerdi D, Sadeghi SJ, Di Nardo G, Rua F, Castrignano S, Allegra P, Gilardi G. CYP116B5: a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes [J]. Mol Microbiol, 2015, 95 (3): 539-554
35. Sun Y, Ma L, Han DF, Du L, Qi FX, Zhang W, Sun JR, Huang S, Kim ES, Li SY. In vitro reconstitution of the cyclosporine specific P450 hydroxylases using heterologous redox partner proteins [J]. J Ind Microbiol Biotechnol, 2017, 44 (2): 161-166
36. Warman AJ, Robinson JW, Luciakove D, Lawrence AD, Marshall KR, Warren MJ, Cheesman MR, Rigby SE, Munro AW, Mclean KJ. Characterization of Cupriavidus metallidurans CYP116B1-A thiocarbamate herbicide oxygenating P450-phthalate dioxygenase reductase fusion protein [J]. FEBS J, 2012, 279 (9): 1675-1693
37. Taylor M, Lamb DC, Cannell R, Dawson M, Kelly SL. Cytochrome P450D1(CYP105D1) from Streptomyces griseus: heterologous expression, activity, and activation effects of multiple xenobiotics [J]. Biochem Biophys Res Commun, 1999, 263 (3): 838-842
38. Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs) [J]. Biochem Biophys Res Commun, 2010, 399 (4): 492-497
39. Syed K, Porollo A, Lam YW, Yadav JS. A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp129 and Leu324 [J]. PLoS ONE, 2011, 6 (12): e28286
40. Syed K, Porollo A, Lam YW, Yadav JS. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes [J]. Appl Environ Microbiol, 2013, 79 (8): 2692-2702
41. Ning DL, Wang H. Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium [J]. PLoS ONR, 2012, 7 (9): e45887
42. Kelly SL, Lamb DC, Baldwin BC, Corran AJ, Kelly DE. Characterization of Saccharomyces cerevisiae CYP61, sterol delta22-desaturase, and inhibition by azole antifungal agents [J]. J Biol Chem, 1997, 272 (15): 86-99
43. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota [J]. World J Gastroenterol, 2015, 21 (29): 8787-8803
44. Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160 (3): 317-326
45. Hernandez-Martinez F, Briones-Roblero CI, Nelson DR, Rivera-Orduna FN, Zuniga G. Cytochrome P450 complement (CYPome) of Candida oregonensis, a gut-associated yeast of bark beetle, Dendroctonus rhizophagus [J]. Fungal Biol, 2016, 120 (9): 1077-1089
46. Sideri A, Goyal A, Di Nardo G, Tsotsou GE, Gilardi G. Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution [J]. J Inorg Biochem, 2013, 120: 1-7
47. Syed K, Porollo A, Miller D, Yadav JS. Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons [J]. Protein Eng Des Sel, 2013, 26 (9): 553-557
48. Farwell CC, Zhang RK, McIntosh JA, Hyster TK, Arnold FH. Enantioselective enzyme-catalyzed aziridination by active-site evolution of a cytochrome P450 [J]. ACS Cent Sci, 2015, 1 (2): 89-93
49. Yang F, Xu B, Zhao SJ, Yang YJ, Tang XH, Wang F, Peng MZ, Huang ZX. De novo sequencing and analysis of the termite mushroom (Termitomyces albuminosus) transcriptome to discover putative genes involved in bioactive component biosynthesis [J]. J Biosci Bioeng, 2012, 114 (2): 228-231
50.

相似文献/References:

[1]张甲耀,李静,夏威林,等.生物修复技术研究进展[J].应用与环境生物学报,1996,2(02):193.
 Zhang Jiayao,Li Jing,Xia Shenglin,et al.BIOREMEDIATION RESEARCHES[J].Chinese Journal of Applied & Environmental Biology,1996,2(03):193.
[2]徐剑宏,洪青,洪源范,等.呋喃丹降解菌CFDS-1的筛选鉴定及降解特性[J].应用与环境生物学报,2011,17(02):237.[doi:10.3724/SP.J.1145.2011.00237]
 XU Jianhong,HONG Qing,HONG Yuanfang,et al.Isolation, Identification and Degradation of Carbofuran-degrading Strain CFDS-1[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):237.[doi:10.3724/SP.J.1145.2011.00237]
[3]卢晓霞,吴淑可,侯珍,等.焦化厂污染土壤中多环芳烃降解菌的分离及降解特性[J].应用与环境生物学报,2011,17(05):722.[doi:10.3724/SP.J.1145.2011.00722]
 LU Xiaoxia,WU Shuke,HOU Zhen,et al.Isolation and Degrading Properties of PAHs-Degrading Bacteria from the Contaminated Soil of a Coking Plant[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):722.[doi:10.3724/SP.J.1145.2011.00722]
[4]徐莲,孙纪全,吴晓磊,等.菌株Rhodococcus sp. Chr-9和Exiguobacterium sp. Chr-43的除铬(VI)特性[J].应用与环境生物学报,2012,18(06):971.[doi:10.3724/SP.J.1145.2012.00971]
 XU Lian,SUN Jiquan,WU Xiaolei,et al.Characteristics of Removal of Cr (VI) by Rhodococcus sp. Chr-9 and Exiguobacterium sp. Chr-43[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):971.[doi:10.3724/SP.J.1145.2012.00971]
[5]崔志松,李倩,高伟,等.复合菌液在模拟溢油岸滩修复中的应用[J].应用与环境生物学报,2013,19(02):324.[doi:10.3724/SP.J.1145.2013.00324]
 CUI Zhisong,LI Qian,GAO Wei,et al.Applicability of Composite Bacterial Culture in Bioremediation of Simulated Oil-polluted Beach[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):324.[doi:10.3724/SP.J.1145.2013.00324]
[6]曹静,李永慧,李玉成,等.腐殖质还原菌的筛选及其对污染物的生物降解[J].应用与环境生物学报,2013,19(03):506.[doi:10.3724/SP.J.1145.2013.00506]
 CAO Jing,LI Yonghui,YI Yucheng,et al.Isolation of a Humus-reducing Bacterium Strain and Its Biodegradation of Pollutants[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):506.[doi:10.3724/SP.J.1145.2013.00506]
[7]许光素,崔志松,郑立,等.高分子量多环芳烃降解过程中菌种间的相互作用[J].应用与环境生物学报,2013,19(04):677.[doi:10.3724/SP.J.1145.2013.00677]
 XU Guangsu,CUI Zhisong,ZHENG Li,et al.Bacterial Interaction in the Biodegradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):677.[doi:10.3724/SP.J.1145.2013.00677]
[8]胡桂萍,宋凤琴,刘波,等.氟氯氰菊酯降解菌FLQ-5的筛选鉴定及降解特性[J].应用与环境生物学报,2013,19(05):851.[doi:10.3724/SP.J.1145.2013.00851]
 HU Guiping,SONG Fengqing,LIU Bo,et al.Isolation, Identification and Degradation Characteristics of Cyfluthrin-degrading Strain FLQ-5[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):851.[doi:10.3724/SP.J.1145.2013.00851]
[9]张莹,石萍,马炯.微小杆菌Exiguobacterium spp.及其环境应用研究进展[J].应用与环境生物学报,2013,19(05):898.[doi:10.3724/SP.J.1145.2013.00898]
 ZHANG Ying,SHI Ping,MA Jiong.Exiguobacterium spp. and Their Applications in Environmental Remediation[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):898.[doi:10.3724/SP.J.1145.2013.00898]
[10]刘再婕,李鹏,郑桂灵.鳞片对维路提拉吸收大气污染物甲醛的影响[J].应用与环境生物学报,2014,20(02):310.[doi:10.3724/SP.J.1145.2014.00310]
 LIU Zaijie,LI Peng,ZHENG Guiling.Effect of foliar trichomes of Tillandsia velutina on the absorption of air pollutant formaldehyde[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):310.[doi:10.3724/SP.J.1145.2014.00310]

更新日期/Last Update: 2018-06-30