|本期目录/Table of Contents|

[1]时欢,林玉玲,赖钟雄,等.CRISPR/Cas9介导的植物基因编辑技术研究进展[J].应用与环境生物学报,2018,24(03):640-650.[doi:10.19675/j.cnki.1006-687x.2017.07019]
 SHI Huan,LIN Yuling,LAI Zhongxiong,et al.Research progress on CRISPR/Cas9-mediated genome editing technique in plants[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):640-650.[doi:10.19675/j.cnki.1006-687x.2017.07019]
点击复制

CRISPR/Cas9介导的植物基因编辑技术研究进展()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
640-650
栏目:
综述
出版日期:
2018-06-30

文章信息/Info

Title:
Research progress on CRISPR/Cas9-mediated genome editing technique in plants
作者:
时欢林玉玲赖钟雄杜宜殷黄鹏林
1福建农林大学园艺植物生物工程研究所 福州 350002 2台湾大学园艺暨景观学系 台北 10617 3中国文化大学生物科技研究所 台北 11114
Author(s):
SHI Huan1 LIN Yuling1 LAI Zhongxiong1 DO Yiyin2 & HUANG Pungling1 2 3**
1 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Department of Horticulture & Landscape Architecture, Taiwan University, Taipei 10617, China 3 Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, China
关键词:
CRISPR/Cas9sgRNA植物基因编辑碱基突变编辑效率
Keywords:
CRISPR/Cas9 sgRNA plant gene editing base mutation edit efficiency
分类号:
Q943.2
DOI:
10.19675/j.cnki.1006-687x.2017.07019
摘要:
植物在生长与发育过程中,常遭遇物理、化学或生物性逆境,运用基因编辑技术(Genome editing)有机会了解并克服这些威胁. 串联间隔短回文重复序列CRISPR/Cas(Clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein)是近几年来新发现的一种基因定点编辑技术,不仅在基因组解析上是阐明基因功能的重要工具,在植物育种上更为划时代的重大突破. CRISPR系统与细菌抵御外源遗传物质入侵的免疫系统有关,目前,应用最多的是Ⅱ型的CRISPR/Cas9,只需核酸酶Cas9和成熟的crRNA:tracrRNA(CRISPR-derived RNA:trans-activating RNA)复合体就可对特定外源DNA序列进行剪切,该技术已经在拟南芥、烟草、大豆、番茄、马铃薯、水稻、小麦、玉米、高粱、矮牵牛、香蕉、甜橙、苹果、毛白杨及地钱等植物中实现了成功编辑,证明了此基因编辑技术的可行性,并达到植物抗逆境、延缓果实成熟、增加杀草剂耐受性、抗病等效果. Cas9和gRNA的启动子与gRNA的靶标数目对基因编辑效率有所影响,值得进一步深入研究. (图2 表1 参81)
Abstract:
Many physical, chemical, and biotic stresses always threaten plants during their growth and development. Using the genome editing technique is a good strategy to improve plant characteristics. CRISPR/Cas (clustered regulatory interspaced short palindromic repeats / CRISPR-associated protein), the adaptive and heritable immune system of prokaryotes, is a genome editing technique newly developed during recent years. At present, the type II CRISPR / Cas9 system is most widely used. Many plants, such as Arabidopsis thaliana, tobacco, soybean, tomato, potato, rice, wheat, maize, sorghum, petunia, banana, sweet orange, apple, poplar, and Marchantia polymorpha, have been edited successfully for stress tolerance, delay of fruit ripening, herbicide resistance, and disease resistance, etc. This system is achieved by the formation of nuclease Cas9 and crRNA: tracrRNA (CRISPR-derived RNA:trans-activating RNA) complex. Further studies about the effect of the promoters of Cas9 and gRNA and the number of gRNA targets on gene editing efficiency have been discussed.

参考文献/References:

1  Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells [J]. Nucleic Acids Res, 1995, 23 (24): 5012-5109
2  Zhang F, Maeder ML, Ungerwallace E, Hoshaw JP, Reyon, D, Christian M. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases [J]. PNAS, 2010, 107 (26): 12028-12033
3  Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases [J]. Nature, 2005, 435 (7042): 646
4  Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ. An improved zinc-finger nuclease architecture for highly specific genome editing [J]. Nat Biotechnol, 2007, 25 (7): 778-785
5  Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases [J]. Genetics, 2010, 186 (2): 757-761
6  曾秀英, 侯学文. CRISPR/Cas9基因组编辑技术在植物基因功能研究及植物改良中的应用[J]. 植物生理学报, 2015 (9): 1351-1358 [Zeng XY, Hou XW. Application of CRISPR/Cas9 genome editing technology in functional genomics and improvement of plants [J]. Plant Physiol J, 2015 (9): 1351-1358]
7  Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering [J]. Trends Biotechnol, 2013, 31 (7): 397-405
8  Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product [J]. J Bacteriol, 1987, 169 (12): 5429-5433
9  Mojica VC, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria (letter) [J]. Mol Microbiol, 2000, 36 (1): 244-246
10 Ruud J, Embden JDAV, Wim G, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43 (6): 1565-1575
11 郑小梅, 张晓立, 于建东, 郑平, 孙际宾. CRISPR-Cas9介导的基因组编辑技术的研究进展[J]. 生物技术进展, 2015 (1): 1-9 [Zheng XM, Zhang XL, Yu JD, Zheng P, Sun JB. CRISPR-Cas9 -based genome engineering [J]. Curr Biotechnol, 2015 (1): 1-9]
12 Mojica FJM, Díez-Villase?or C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements [J]. J Mol Evol, 2005, 60 (2): 174-182
13 Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [J]. Microbiology, 2005, 151 (3): 653-63
14 Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J]. Microbiology, 2005, 151 (8): 2551-2561
15 Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action [J]. Biol Direct, 2006, 1 (1): 7
16 刘志国. CRISPR/Cas9系统介导基因组编辑的研究进展[J]. 畜牧兽医学报, 2014, 45 (10): 1567-1583 [Liu ZG. Research progress on CRISPR/Cas9 mediated genome editing [J]. Acta Veter Zootech Sin, 2014, 45 (10): 1567-1583]
17 Barrangou R, Fremaux C, Deveau H, Richards M, BoyavalP, Moineau S, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315 (5819): 1709-1712
18 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337 (6096): 816-821
19 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339 (6121): 819-823
20 Richter H, Randau L, Plagens A. Exploiting CRISPR/Cas: interference mechanisms and applications [J]. Int J Mol Sci, 2013, 14 (7): 14518-14531
21 Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J]. Microbiology, 2009, 155 (3): 733-740
22 Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. PNAS, 2012, 109 (39): E2579-E2586
23 李聪, 曹文广. CRISPR/Cas9介导的基因编辑技术研究进展[J]. 生物工程学报, 2015, 31 (11): 1531-1542 [Li C, Cao WG. Advances in CRISPR/Cas9-mediated gene editing [J]. Chin J Biotechnol, 2015, 31 (11): 1531-1542]
24 Ruud J, Embden, JDAV, Wim G, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43 (6): 1565-75
25 Gilles V, Ibtissem G, Christine P. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats [J]. Bmc Bioinformatics, 2007, 8 (1): 172
26 瞿礼嘉, 郭冬姝, 张金喆, 秦跟基. CRISPR/Cas系统在植物基因组编辑中的应用[J]. 生命科学, 2015 (1): 64-70 [Qu LJ, Guo DS, Zhang JZ, Qin GJ. The application of CRISPR/Cas system in plant genome editing [J]. Chin Bull Life Sci, 2015 (1): 64-70]
27 Mojica FJ, D??Ez-Villase?±Or C, Garc??A-Mart??Nez J. Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J]. Microbiology, 2009, 155(3):733-740
28 Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Van Der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes [J]. Science, 2008, 321 (5891): 960-964
29 Pougach K, Semenova E, Bogdanova E, DatsenkoK A, Djordjevic M, Wanner B L, Severinov K. Transcription, processing and function of CRISPR cassettes in Escherichia coli [J]. Mol Microbiol, 2010, 77 (6): 1367-1379
30 Pul ?, Wurm R, Arslan Z, Gei?en R, Hofmann N, Wagner R. Identification and characterization of E. coli CRISPR‐cas promoters and their silencing by H‐NS [J]. Mol Microbiol, 2010, 75 (6): 1495-1512
31 Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A. Transcription profile of Thermus thermophilus CRISPR systems after phage infection [J]. J Mol Biol, 2010, 395 (2): 270-281
32 Hale C, Kleppe K, Terns RM, Terns MP. Prokaryotic silencing (psi) RNAs in pyrococcus furiosus [J]. Rna, 2008, 14 (12): 2572-2579
33 Lillestol RK, Shah SA, Brügger K, Redder P. Phan H, Christiansen J, Garrett RA. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties [J]. Mol microbiol, 2009, 72 (1): 259-272
34 Deltcheva E, Chylinski K, Sharm, CM, Gonzales K, Chao Y, Pirzada ZA, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J]. Nature, 2011, 471 (7340): 602-607
35 Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315 (5819): 1709-1712
36 Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Moineau S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus [J]. J Bacteriol, 2008, 190 (4): 1390-1400
37 Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, BarendregtA, Doudna JA. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions [J]. PNAS, 2011, 108 (25): 10092-10097
38 Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468 (7320): 67
39 Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae [J]. FEMS Microbiol Lett, 2009, 296 (1): 110-116
40 Li JF, Norville JE, Aach J, McCormack M, Zhang D, BushJ,Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nat Biotechnol, 2013, 31 (8): 688-691
41 Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. Application of the CRISPR–Cas system for efficient genome engineering in plants [J]. Mol Plant, 2013, 6 (6): 2008
42 Jiang W, Zhou H, BiH, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice [J]. NAR, 2013, 41 (20): e188
43 Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell Res, 2013, 23 (10): 1229
44 Fauser F, Schiml S, Puchta H. Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana [J]. Plant J, 2014, 79 (2): 348-359
45 Schiml S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny [J]. Plant J, 2014, 80 (6): 1139-1150
46 Jiang W, Yang B, Weeks D P. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations [J]. PLoS ONE, 2014, 9 (6): e99225
47 Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Xie Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol Plant, 2015, 8 (8): 1274-1284
48 Nekrasov V, Staskawicz B, Weigel D, Jones JD. KamounS. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease [J]. Nat Biotech, 2013, 31 (8): 691-693
49 Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat [J]. G3 Genes Genomes Genetics, 2013, 3 (12): 2233-2238
50 Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum [J]. Plant Mol Biol, 2015, 87 (1-2): 99-110
51 孙现军. CRISPR/Cas9基因定点突变体系构建与大豆抗旱相关gma-miR160功能研究[D]. 杨凌: 西北农林科技大学, 2015 [Sun XJ. Construction of CRISPR/Cas9 site-directed mutagenesis system and fuctional research of drought-responsive soybean gma-miR160 [D] Yangling: Northwest A&F University, 2015]
52 Jacobs TB, Lafayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9 [J]. Bmc Biotechnol, 2015, 15 (1): 1-10
53 蔡宇鹏. CRISPR/Cas9介导的大豆基因组定点编辑研究[D]. 北京: 中国农业科学院, 2016 [Cai YP. CRISPR/Cas9-mediated genome editing in soybean [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016 ]
54 Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system [J]. Plant Physiol, 2014, 166 (3): 1292-1297
55 Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K , Federici F. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model [J]. Plant Physiol, 2014, 166 (2): 455-469
56 Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening [J]. Biochem.Biophys Res Commu, 2015, 467 (1): 76-82
57 Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system [J]. Plant Cell Rep, 2015, 34 (9): 1473-1476
58 Zhou H, Liu B, Weeks D P, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice [J]. NAR, 2014, 42 (17): 10903-10914
59 Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X,Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system [J]. Cell Res, 2013, 23 (10): 1233
60 Li J, Zhang Y, Chen K, Liang, Z. Targeted genome modification of crop plants using a CRISPR-Cas system [J]. Nat Biotechnol, 2013, 31 (8): 686-688
61 Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation [J]. Plant Biotechnol J, 2014, 12 (6): 797-807
62 Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice [J]. Rice, 2014, 7 (1): 5
63 Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system [J]. Nat Protoc, 2014, 9 (10): 2395-2410
64 Endo M, Mikami M, Toki S. Bi-allelic gene targeting in rice [J]. Plant Physiol, 2016, 170 (2): 667-677
65 Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Xia L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol Plant, 2016, 9 (4): 628-631
66 Wang F, Wang C, Liu P, LeiC, Hao W, Gao Y, Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922 [J]. PLoS ONE, 2016, 11 (4): e0154027
67 Liang G, Zhang H, Lou D, Yu D. election of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing [J]. Sci Rep, 2016, 6: 21451
68 沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 浙江农业学报, 2017, 29 (2): 177-185 [Shen C. CRISPR/Cas9 editing and expression analysis of LOC_Os10g05490 in rice under cold stress [J]. Acta Agric Zhejiangensis, 2017, 29 (2): 177-185 ]
69 Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew [J]. Nat Biotechnol, 2014, 32 (9): 947-951
70 Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system [J]. J Genet Genom, 2014, 41 (2): 63-68
71 Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants [J]. BMC Plant Biol, 2014, 14 (1): 327
72 Zhang B, Yang X, Yang C, Li M, Guo Y. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia [J]. Sci Rep, 2016, 6: 20315
73 胡春华, 邓贵明, 孙晓玄, 左存武, 李春雨, 邝瑞彬,易干军. 香蕉CRISPR/Cas9基因编辑技术体系的建立[J]. 中国农业科学, 2017, 50 (7): 1294-1301 [Hu CH, Deng GM, Sun XX, Zuo CW,Li CY,Kuang RB,Yi GJ. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana [J]. Sci Agric Sin, 2017, 50 (7): 1294-1301 ]
74 Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA [J]. PLoS ONE, 2014, 9 (4): e93806
75 Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation [J]. Sci Rep, 2015, 5
76 Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Osakabe Y. Efficient genome editing in apple using a CRISPR/Cas9 system [J]. Sci Rep, 2016, 6: 31481
77 Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. [J]. Plant Cell Physiol, 2014, 55 (3): 475-481
78 Liu W, Zhu X, Lei M, Xia Q, Botella JR, Zhu JK, Mao Y. A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana [J]. Sci Bullet, 2015, 60 (15): 1332-1347
79 Hyun Y, Kim J, Cho S W, Choi Y, Kim JS, Coupland G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles [J]. Planta, 2015, 241 (1): 271-284
80 Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system [J]. Mol Plant, 2013, 6 (6): 1975-1983
81 朱金洁. CRISPR-Cas9介导的玉米基因组定点编辑研究[D]. 北京: 中国农业大学, 2015 [Zhu JJ. Targeted genome editing in maize using CRISPR-Cas9 [D]. Beijing: China Agricultural University, 2015]

更新日期/Last Update: 2018-06-30