|本期目录/Table of Contents|

[1]李其,刘琳,蔡义民,等.川西北高寒沙化草地治理恢复过程中CO2通量变化[J].应用与环境生物学报,2018,24(03):441-449.[doi:10.19675/j.cnki.1006-687x.2017.07032]
 LI Qi,LIU Lin**,CAI Yimin,et al.Changes in CO2 flux for different recovery processes of desertification in the alpine meadows of Northwest Sichuan[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):441-449.[doi:10.19675/j.cnki.1006-687x.2017.07032]
点击复制

川西北高寒沙化草地治理恢复过程中CO2通量变化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
441-449
栏目:
研究论文
出版日期:
2018-06-30

文章信息/Info

Title:
Changes in CO2 flux for different recovery processes of desertification in the alpine meadows of Northwest Sichuan
作者:
李其刘琳蔡义民裴姝婷罗英刘丽霞范慧孙飞达周春梅申旭东陈有军
1四川农业大学动物科技学院 成都 611130 2日本畜产草地研究所 东京 329-2793 3西南民族大学青藏高原研究院 成都 610041
Author(s):
LI Qi1 LIU Lin1** CAI Yimin2 PEI Shuting1 LUO Ying1 LIU Lixia1 FAN Hui1 SUN Feida1 ZHOU Chunmei1 SHEN Xudong1 & CHEN Youjun3
1 Animal Science and Technology College of Sichuan Agricultural University, Chengdu 611130, China 2 National Institute of Livestock and Grassland Science, Tokyo 329-2793, Japan 3 Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
关键词:
高寒草地沙化恢复碳通量影响因素土壤温度
Keywords:
alpine grassland desertification recovery carbon flux influencing factor soil temperature
分类号:
S812
DOI:
10.19675/j.cnki.1006-687x.2017.07032
摘要:
川西北高寒草地生态地位突出但沙化严重,为了解其在沙化治理恢复中的碳通量变化机制,于2016年草地生长季节(7-9月)在红原县沙化草地治理恢复区分别选择恢复初期、恢复中期、恢复后期、未恢复治理4类沙化草地,利用仪器LI-8100测定CO2通量,并分析影响碳通量变化的因素. 结果表明,随着治理恢复程度的加深,沙化草地碳汇功能逐渐增强,恢复初期、中期、后期样地在生长季净生态系统CO2交换量(NEE)分别为-1.61、-3.55、-4.38 μmol m-2 s-1,恢复初期到中期碳通量变化最为剧烈,提高了约120.50%. 恢复治理也使沙化草地生态系统呼吸(ER)和土壤呼吸(SR)加强(P < 0.05). 7月中下旬,各恢复梯度样地NEE、ER和SR分别达到峰值,之后随生长季延长,各指标均接近零. 生长季7-9月期间,对照样地碳通量日动态变化平缓,均表现为全天排放;在各恢复治理阶段沙化草地中,碳通量日动态均呈单峰型格局,且随着沙化恢复的进程,日动态峰值绝对值显著升高(P < 0.05),表现出更强的碳汇能力. 回归分析表明,碳通量与植被盖度、地上生物量、土壤0-5 cm含水量达到极显著正相关(P < 0.01),与0-5 cm土壤温度相关性较弱,表明在川西北高寒沙化恢复草地生长旺季,与0-5 cm土壤温度相比,0-5 cm土壤含水量对碳通量的影响更大. 综上所述,沙化治理显著提高了川西北高寒沙化草地生长季的固碳能力,且在恢复中期,受植被恢复和表层土壤(0-5 cm)含水量状况改善的影响,固碳能力显著提升. (图6 表5 参47)
Abstract:
Desertification has emerged as a serious threat to the alpine meadows of Northwest Sichuan in recent decades. Artificial vegetation had certain effects on desertification recovery, while how the CO2 flux changed and its reasons are still unclear. During the growing season in 2016 (i.e., from July to September), we selected the desertified alpine meadows with different recovery degrees, including the early stage of restoration, the middle stage of restoration, the late stage of restoration, and control (the unrecovered desertification meadow) as four transects. CO2 flux was measured by the instrument LI-8100, and the microenvironment factors that affected CO2 flux changes were analyzed. The results showed that the carbon sequestration function of desertified alpine meadows gradually increased with the degree of recovery. Net ecosystem exchange (NEE) were -1.61, -3.55, and -4.38 μmol m-2 s-1 in the early, mid-term, and late transects, respectively, and the most dramatic changes occurred from the early stage to mid-term stage, increasing by 120.50%. Both ecosystem respiration (ER) and soil respiration (SR) were enhanced significantly with restoration (P < 0.05). In mid or late July, NEE, ER, and SR reached their maximum values, and thereafter, the indicators varied to near zero (P < 0.05). During the whole growing season, the daily dynamic in CO2 flux for the control alpine meadow was mild and retained the trend of continuous release all day, but that in the desertified alpine meadow was a single peak pattern. Moreover, with restoration process, the peak of CO2 flux increased and reached a peak in the late stage of the recovery process. The regression analysis showed that there was a significant positive correlation between CO2 flux and vegetation coverage, aboveground biomass, and soil moisture (0–5 cm) (P < 0.01), and a weak correlation with 0–5-cm soil temperature (P < 0.01). This indicates that topsoil moisture (5 cm) is a more significant factor for CO2 flux than topsoil temperature during the growing season in the restoration of desertified alpine meadows in Northwest Sichuan. In general, the vegetation recovery significantly improved the carbon-sequestration ability of the desertified alpine meadows during the growing season in Northwest Sichuan, and at the middle stage of restoration, the carbon-sequestration ability improved significantly due to vegetation restoration and increase in topsoil (0–5 cm) moisture.

参考文献/References:

1. 陶波, 葛全胜, 李克让, 邵雪梅. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20 (5): 564-575 [Tao B, Ge QS, Li KR, Shao XM. Research progress of terrestrial ecosystem carbon cycle [J]. Geogr Res, 2001, 20 (5): 564-575]
2. Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304 (5677): 1623-1627
3. Lal R. Carbon sequestration in dryland ecosystems [J]. Environ Manage, 2004, 33 (4): 528-544
4. Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440 (7081): 165-173
5. Whittaker RH, Niering WA. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient [J]. Ecology, 1975, 56 (4): 771-790
6. 董自红. 新疆山区草地生态系统植被恢复过程中碳循环研究[D]. 乌鲁木齐: 新疆农业大学, 2006 [Dong ZH. The carbon cycle researches in the recovering mountainous grassland ecosystem in Xinjiang [D]. Urumqi: Xinjiang Agricultural University, 2006]
7. Defries RS, Field CB, Fung I, Collatz GJ, Bounoua L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity [J]. Global Biogeochem Cy, 1999, 13 (3): 803-815
8. 赵娜, 邵新庆, 吕进英, 王堃. 草地生态系统碳汇浅析[J]. 草原与草坪, 2012, 31 (6): 75-82 [Zhao N, Shao XQ, Lü JY ,Wang K. Preliminary analysis of carbon sequestration of grassland ecosystem [J]. Grassland Turf, 2012, 31 (6): 75-82]
9. 钟华平, 樊江文, 于贵瑞, 韩斌. 草地生态系统碳蓄积的研究进展[J]. 草业科学, 2005, 22 (1): 4-11 [Zhong HP, Fan JW, Yu GR, Han B. Research progress of carbon accumulation in grassland ecosystem [J]. Pratac Sci, 2005, 22 (1): 4-11]
10. 汤洁, 毛子龙, 韩维峥, 徐小明, 王晨野. 土地利用/覆被变化对土地生态系统有机碳库的影响——以吉林省通榆县为例[J]. 生态环境, 2008, 17 (5): 2008-2013 [Tang J, Mao ZL, Han WZ, Xu XM, Wang CY. Impact of land use / cover changes on the organic carbon storage of land ecosystem: a case study in Tongyu county, Jilin province [J]. Ecol Environ, 2008, 17 (5): 2008-2013]
11. 王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义[J]. 冰川冻土, 2002, 24 (6): 693-700 [Wang GX, Cheng GD, Shen YP. Soil organic carbon pool of grassland in Qinghai - Tibet Plateau and its global significance [J]. J Glaciol Geocryol, 2002, 24 (6): 693-700]
12. 李文华, 赵新全, 张宪洲, 石培礼, 王小丹, 赵亮. 青藏高原主要生态系统变化及其碳源/碳汇功能作用[J]. 自然杂志, 2013, 35 (3): 172-178 [Li WH, Zhao XQ, Zhang XZ, Shi PL, Wang XD, Zhao L. Changes of main ecosystems and their carbon source / carbon sequestration functions in the Qinghai - Tibet Plateau[J]. Chin J Nat, 2013, 35 (3): 172-178]
13. 王艳, 杨剑虹, 潘洁, 李哲. 川西北高寒草原退化沙化成因分析——以红原县为例[J]. 草原与草坪, 2009 (1): 20-26 [Wang Y, Yang JH, Pan J, Li Z. Analysis on the causes of degradation and desertification of alpine grassland in Northwest Sichuan - a case study of Hongyuan county. Grassland Turf, 2009 (1): 20-26]
14. 魏振海, 董治宝, 胡光印, 逯军峰. 近40 a来若尔盖盆地沙丘时空变化[J]. 中国沙漠, 2010, 30 (1): 26-32 [Wei ZH, Dong ZB, Hu GY, Lu JF. Spatial and temporal patterns of sand dunes in Zoige Basin in last 40 years [J]. J Desert Res, 2010, 30 (1): 26-32]
15. 万婷, 涂卫国, 席欢, 李裕冬, 唐学芳, 杨一川. 川西北不同程度沙化草地植被和土壤特征研究[J]. 草地学报, 2013, 21 (4): 650-657 [Wan T, Tu WG, Xi H, Li YD, Tang XF, Yang YC. Study on vegetation and soil Characteristics of desertification grassland in Northwest Sichuan [J]. Acta Agrect Sin, 2013, 21 (4): 650-657]
16. 冉启凡, 孙庚, 刘琳, 张楠楠, 史长光, 陈冬明, 马建忠. 若尔盖高寒草地沙化过程碳通量的变化特征[J]. 应用与环境生物学报, 2015, 21 (5): 954-959 [Ran QF, Sun G, Liu L, Zhang NN, Shi CG, Chen DM, Ma JZ. Changes in carbon fluxes during the desertification process of alpine grasslands on the Zoige Plateau [J]. Chin J Appl Environ Biol, 2015, 21 (5): 954-959]
17. 陈晓鹏, 尚占环. 中国草地生态系统碳循环研究进展[J]. 中国草地学报, 2011, 33 (4): 99-110 [Chen XP, Shang ZH. Progress of carbon cycle research in China grassland ecosystem [J]. Chin J Grassland, 2011, 33 (4): 99-110]
18. Wang S, Wilkes A, Zhang Z, Chang X, Lang R, Wang Y, Niu H. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis [J]. Agr Ecosyst Environ, 2011, 142 (2-3): 329-340
19. GB 19377-2003. 天然草地退化、沙化、盐渍化的分级标准[S] [GB19377-2003. Parameters for degradation, sandification and salification of rangelands [S]]
20. 张法伟, 王军邦, 李以康, 林丽, 曹广民. 高寒嵩草草甸不同退化梯度下生态系统光合和呼吸响应特征[J]. 中国草地学报, 2016, 38 (1): 34-40 [Zhang FW, Wang JB, Li YK, Lin L, Cao GM. Response of ecosystem photosynthesis and respiration to degradation gradients in an Alpine Kobresia Meadow [J]. Chin J Grassland, 2016, 38 (1): 34-40]
21. Niu S, Sherry RA, Zhou X, Wan S, Luo Y. Nitrogen regulation of the climate carbon feedback: Evidence from a long-term global change experiment [J]. Ecology, 2010, 91 (11): 3261-3273
22. Wang RZ. Photosynthetic pathway types of forage species along grazing gradient from the Songnen grassland, northeastern China [J]. Photosynthetica, 2002, 40 (1): 57-61
23. Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CM.Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient [J]. Oikos, 2004, 107 (1): 148-160
24. Xu SX, Zhao XQ, Li YN, Zhao L, Yu GR, Sun XM, Cao GM. Diurnal and monthly variations of carbon dioxide flux in an alpine shrub on the Qinghai - Tibet Plateau [J]. Chin Sci Bull, 2005, 50 (6): 539-543
25. 黄爱纤, 张新跃, 唐川江, 张绪校, 鲁岩. 川西北牧区水热条件与牧草产量的相关性[J]. 草业科学, 2014, 32 (5): 754-759 [Huang AX, Zhang XY, Tang JC, Zhang XX, Lu Y. Correlation between grassland hydrothermal conditions and forage yield of pastoral area in Northwest Sichuan [J]. Pratacult Sci, 2014, 32 (5): 754-759]
26. 王海波, 马明国, 王旭峰, 谭俊磊, 耿丽英, 于文凭, 家淑珍. 青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J]. 干旱区资源与环境, 2014, 28 (6): 50-56 [Wang HB, Ma MG, Wang XF, Tan JL, Yu WP, Jia SZ. Carbon flux variation characteristics and its influencing factors in an alpine meadow ecosystem on eastern Qinghai- Tibetan plateau [J]. J Arid Land Resour Environ, 2014, 28 (6): 50-56]
27. Wang W, Guo J, Oikawa T. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China[J]. J Biosciences, 2007, 32 (2): 375-384
28. 史长光, 泽柏, 杨满业, 肖冰雪.川西北沙化草地植被恢复后土壤理化性质的变化[J]. 草业与畜牧, 2010 (4): 1-4, 32 [Shi CG, Ze B, Yang MY, Xiao BX. Changes of soil physical and chemical properties after vegetation in desertification grassland, Northwest Sichuan, China [J]. Pratacult Anim Husb, 2010 (4): 1-4, 23 ]
29. 贺达汉, 长有德, 田真, 杨云飞, 杨顺堂, 柳永玺, 李玉平, 马世瑜. 草原沙化与恢复中昆虫群落组成、营养结构及多样性变化研究[J]. 生态学报, 2001, 21 (1): 117-125 [He DH, Chang YD, Tian Z, Yang YF, Yang ST, Liu YX, Li YP, Ma SY. Dynamics in composition, trophic structure and diversity of an insect community during the processes of succession and restoration [J]. Acta Ecol Sin, 2001, 21 (1): 117-125]
30. 岳广阳, 赵林, 赵拥华, 李元寿. 青藏高原草地生态系统碳通量研究进展[J]. 冰川冻土, 2010, 32 (1): 166-174 [Yue GY, Zhao L, Zhao YH, Li YS. Research advances of grassland ecosystem CO2 flux on Qinghai-Tibetan Plateau [J]. J Glaciol Geocryol, 2010, 32 (1): 166-174]
31. Baptist F, Choler P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows [J]. Ann Bot, 2008, 101: 549-559
32. Perez-Quezada JF, Saliendra NZ, Akshalov K, Johnson DA, Laca EA. Land use influences carbon fluxes in Northern Kazakhstan [J]. Rangeland Ecol Manage, 2010, 63 (1): 82-93
33. 金生英. 三江源区退化高寒草甸恢复与重建中土壤动物群落结构的研究[D]. 西宁: 青海大学, 2014 [Jin SY.Study on the soil fauna communities structure of degraded alpine meadows under restoration in the Three River Source Region [D]. Xining: Qinghai University, 2014]
34. 卢虎, 姚拓, 李建宏, 马文彬, 柴晓红. 高寒地区不同退化草地植被和土壤微生物特性及其相关性研究[J]. 草业学报, 2015, 24 (5): 34-43 [Lu H, Yao T, Li JH, Ma WB, Chai XX. Vegetation and soil microorganism characteristics of degraded grasslands [J]. Acta Pratacult Sin, 2015, 24 (5): 34-43]
35. 李东, 罗旭鹏, 曹广民, 吴琴, 胡启武, 卓玛措, 李惠梅. 高寒灌丛退化演替过程对生态系统呼吸温度敏感性的影响[J]. 环境科学, 2015 (3): 1075-1083 [Li D, Luo XP, Cao GM, Wu Q, Hu QW, Zhuo MC, Li HM. Effect of degradation succession process on the temperature sensitivity of ecosystem respiration in alpine Potentilla fruticosa scrub meadow[J]. Environ Sci, 2015 (3): 1075-1083]
36. 李国栋, 张俊华, 陈聪, 田海峰, 赵丽萍. 气候变化背景下中国陆地生态系统碳储量及碳通量研究进展[J]. 生态环境学报, 2013, 22 (5): 873-878 [Li GD, Zhang JH, Chen C, Tian HF, Zhao LP. Research progress on carbon storage and flux in different terrestrial ecosystem in China under global climate change [J]. Ecol Environ, 2013, 22 (5): 873-878]
37. 李军祥, 曾辉, 朱军涛, 张扬建, 陈宁, 刘瑶杰. 藏北高原高寒草甸生态系统呼吸对增温的响应[J]. 生态环境学报, 2016, 25 (10): 1612-1620 [Li JX, Zeng H, Zhu JT, Zhang YJ, Chen N, Liu YJ. Responses of different experimental warming on ecosystem respiration in Tibetan alpine meadow [J]. Ecol Environ, 2016, 25 (10): 1612-1620]
38. 亓伟伟, 牛海山, 汪诗平, 刘艳杰, 张立荣. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J]. 生态学报, 2012, 32 (6): 1713-1722 [Qi WW, Niu HS, Wang SP, Liu YJ, Zhang LR. Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau [J]. Acta Ecol Sin, 2012, 32 (6): 1713-1722]
39. 魏茂宏, 林慧龙, 王钊齐. 江河源区高寒草甸退化序列秃斑热岛效应研究[J]. 中国草地学报, 2015, 37 (1): 22-29 [Wei MH, Lin HL, Wang ZQ. Study on the “Heat Island Effect” of barren patch on degradation sequences of alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China [J]. Chin J Grassland, 2015, 37 (1): 22-29]
40. 王风玉, 周广胜, 贾丙瑞, 王玉辉. 水热因子对退化草原羊草恢复演替群落土壤呼吸的影响[J]. 植物生态学报, 2003, 27 (5): 644-649 [Wang FY, Zhou GS, Jia BR, Wang YH. Effects of heat and water factors on soil respiration of restoring leymus chinensis steppe in degraded land [J]. Chin J Plant Ecol, 2003, 27 (5): 644-649 ]
41. 李洪建. 不同生态系统土壤呼吸与环境因子的关系研究[D]. 太原: 山西大学, 2008 [Li HJ. Studies on soil respiration and its relations to environmental factors in different ecosystems [D]. Taiyuan: Shanxi University, 2008]
42. 李凌浩, 王其兵, 白永飞, 周广胜, 邢雪荣. 锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J]. 植物生态学报, 2000, 24 (6): 680-686 [Li LH, Wang QB, Bai YF, Zhou GS, Xing XR. Soil respiration of a Leymus chinensis grassland stand in the Xilin River basin as affected by over-grazing and climate [J]. Chin J Plant Ecol, 2000, 24 (6): 680-686]
43. 白炜, 王根绪, 刘光生. 青藏高原高寒草甸生长期CO2排放对气温升高的响应[J]. 生态学杂志, 2011, 30 (6): 1045-1051 [Bai W, Wang GX, Liu GS. Effects of elevated temperature on CO2 flux during growth season in an alpine meadow ecosystem of Qinghai-Tibet Plateau [J]. Chin J Ecol, 2011, 30 (6): 1045-1051]
44. 郭继勋, 张宏一. 羊草羊地土壤呼吸与枯枝落叶分解[J]. 中国草地学报, 1991 (5): 39-41 [Guo JX, Zhang HY. Soil respiration and litter decomposition in aneurolepidium Chinense range[J]. Chin J Grassland, 1991 (5): 39-41]
45. 温军, 周华坤, 姚步青, 李以康,赵新全, 陈哲, 连利叶, 郭凯先. 三江源区不同退化程度高寒草原土壤呼吸特征[J]. 植物生态学报, 2014, 38 (2): 209-218 [Wen J, Zhou HK, Yao BQ, Li YK, Zhao XQ, Chen Z, Lian LY, Guo KX. Characteristics of soil respiration in different degraded alpine grassland in the source region of Three-River [J]. Chin J Plant Ecol, 2014, 38 (2): 209-218]
46. Zeng C, Zhang F, Wang Q, Chen Y, Joswiak DR. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau [J]. J Hydrol, 2013, 478 (2): 148-156
47. 陈玫妃, 曾辉, 王钧. 青藏高原高寒草地土壤水分生态特征研究现状[J]. 中国草地学报, 2015, 37 (2): 94-101 [Chen MF, Zeng H, Wang J. Research progress in the ecological characteristics of soil water in alpine grasslands on the Qinghai-Tibet Plateau [J]. Chin J Grassland, 2015, 37 (2): 94-101]
48.

相似文献/References:

[1]冉启凡,孙庚,刘琳,等.若尔盖高寒草地沙化过程碳通量的变化特征[J].应用与环境生物学报,2015,21(05):954.[doi:10.3724/SP.J.1145.2015.02028]
 RAN Qifan,SUN Geng,LIU Lin,et al.Changes in carbon fluxes during the desertification process of alpine grasslands on the Zoige Plateau[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):954.[doi:10.3724/SP.J.1145.2015.02028]

更新日期/Last Update: 2018-06-30