|本期目录/Table of Contents|

[1]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457-464.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):457-464.[doi:10.19675/j.cnki.1006-687x.2017.08019]
点击复制

外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
457-464
栏目:
研究论文
出版日期:
2018-06-30

文章信息/Info

Title:
Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress
作者:
孙德智韩晓日彭靖范富杨恒山马玉露侯迷红
1内蒙古民族大学农学院 通辽 028000 2沈阳农业大学土地与环境学院 沈阳 110866
Author(s):
SUN Dezhi1** HAN Xiaori2 PENG Jing2 FAN Fu1 YANG Hengshan1 MA Yulu1 & HOU Mihong1
1College of Agronomy, Inner Mongolia University for Nationalities, Tongliao 028000, China 2College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
关键词:
一氧化氮水杨酸盐胁迫番茄叶绿素荧光碳同化叶黄素循环
Keywords:
nitric oxide salicylic acid salt stress tomato chlorophyll fluorescence carbon assimilation xanthophyll cycle
分类号:
Q945.78
DOI:
10.19675/j.cnki.1006-687x.2017.08019
摘要:
以番茄品种‘秦丰保冠’为试材,在水培条件下研究单独和复配施用一氧化氮(NO)供体硝普钠(SNP)、水杨酸(SA)对100 mmol/L NaCl胁迫下番茄幼苗叶片气体交换、叶绿素荧光、CO2响应曲线、光合色素含量和叶黄素循环的影响. 结果显示:(1)单独或复配外施SNP、SA均能使受NaCl胁迫处理的番茄幼苗叶片净光合速率(Pn)、气孔导度(Gs)、PSⅡ最大光化学效率(Fv/Fm)、天线转化效率(Fv′/Fm′)、实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)和叶绿素荧光衰减率(Rfd)不同程度升高,胞间CO2浓度(Ci)、初始荧光(Fo)和PSⅡ非光化学荧光猝灭系数(NPQ)显著降低,其中以SNP和SA复配处理的综合效果最好. (2)NaCl胁迫下,番茄幼苗叶片CO2羧化效率(CE)、RuBP最大再生速率(Jmax)、RuBisCO及其活化酶活性和最大羧化速率(Vc max)的下降均能在单独或复配施用SNP、SA的处理下得到有效缓解,并以SNP和SA复配处理更佳. (3)SNP、SA单独或复配处理均能有效抑制NaCl胁迫下番茄幼苗叶片光合色素(Chl a、Chl b和Car)含量、Chl a/b值和叶黄素循环库(V + A + Z)的下降及叶黄素循环脱环氧化程度(A + Z)/(V + A + Z)的升高,且以SA和SNP复配处理效果最明显. 本研究表明,NaCl胁迫下依赖叶黄素循环的天线热耗散不是外源NO、SA单独或复配处理保护番茄幼苗叶片光合机构的生理机制,对PSⅡ及其初级电子受体醌(QA)下游电子传递通畅性的保护,以及对CO2同化活性的改善才是外源NO、SA提高番茄幼苗叶片光合功能、增强其耐盐能力的主要原因,其中NO和SA复配处理时具有协同增效作用. (图5 表1 参45)
Abstract:
Using the tomato variety ‘Qin Feng Bao Guan’ as experimental material, and by the hydroponics nutrient solution method, we investigated the effects of single and compound applications of nitric oxide (NO) donor sodium nitroprusside (SNP) and salicylic acid (SA) on the gas exchange and chlorophyll fluorescence parameters, RuBisCO activation, CO2 response curve, photosynthetic pigment content, and xanthophyll cycle in seedling leaves under an NaCl stress of 100 mmol/L. The main findings were as follows: (1) Single or combined applications of SNP and SA could increase the net photosynthetic rate (Pn), stomatal conductance (Gs), PS II maximal photochemistry efficiency (Fv/Fm), antenna conversion efficiency (Fv′/Fm′), practical photochemical efficiency (ΦPSⅡ), photochemical fluorescence quenching coefficient (qP), and chlorophyll fluorescence decay rate (Rfd) of tomato seedling leaves at different rates, and significantly reduce the intercellular CO2 concentration (Ci), original fluorescence (Fo), and PS II non-photochemical fluorescence quenching coefficient (NPQ), after NaCl stress treatment. The strongest effect was observed after applying a combination of SNP and SA. (2) Under NaCl stress, the decrease of CO2 carboxylation efficiency (CE), RuBP maximum regeneration rate (Jmax), RuBisCO and its activation enzyme activity, and the maximum carboxylation rate (Vc max) in tomato seedling leaves could be effectively relieved by SNP, SA, or SNP + SA applications; however, SNP + SA treatment had the strongest effect. (3) Single or combined applications of SNP and SA could effectively inhibit the decrease of the contents of photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids), the ratio of chlorophyll a and chlorophyll b, xanthophyll cycle pool size (V + A + Z), and the increase of the de-epoxidation extent of the xanthophyll cycle (A + Z)/(V + A + Z). The combined application of SNP and SA had the most prominent effect. In conclusion, the heat dissipation of the antenna, which is dependent on the xanthophyll cycle, is not the physiological mechanism for the protection of the photosynthetic apparatus by exogenous NO, SA alone, or compound treatment in tomato seedling leaves under NaCl stress. It is the main reason for the increase of photosynthetic function and enhanced salt tolerance of leaves tomato seedlings that the protection of PS II and its primary electron acceptor quinone (QA) downstream electron transfer patency, and the improvement of CO2 assimilation activity by application of exogenous NO, SA alone, or a combination of the two; synergistic effects were observed after using a combination of SNP and SA.

参考文献/References:

1. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats [J]. SpringerPlus, 2013, 2 (6): 1-7
2. Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, Arif MS, Hafeez F, Al-Wabel MI, Shahzad AN. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review [J]. Environ Sci Pollut R, 2017, 24 (14): 12700-12712
3. 孙德智, 韩晓日, 彭靖, 范富, 张庆国. 外源NO对Ca(NO3)2胁迫下番茄幼苗PSII功能及光能分配利用的影响[J]. 核农学报, 2016, 30 (12): 2451-2459 [Sun DZ, Han XR, Peng J, Fan F, Zhang QG. Effect of exogenous nitric oxide on PSII function and distribution and utilization of luminous energy in tomato seedlings under stress of Ca(NO3)2 [J]. J Nucl Agric Sci, 2016, 30 (12): 2451-2459]
4. Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: a redox cue in deconvolution [J]. New Phytol, 2014, 202 (4): 1142-1156
5. Yusuf M, Hayat S, Alyemeni MN, Fariduddin Q, Ahmad A. Salicylic acid: physiological roles in plants [C]//Hayat S, Ahmad A, Alyemeni MN. Salicylic Acid: Plant Growth and Development. Dordrecht: Springer Netherlands, 2013: 183-247
6. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense [J]. P Natl Acad Sci USA, 2000, 97 (16): 8849-8855
7. Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Schiavo FL. Salicylic acid activates nitric oxide synthesis in Arabidopsis [J]. J Exp Bot, 2007, 58 (6): 1397-1405
8. Khurana A, Kumar R, Babbar SB. Nitric oxide is involved in salicylic acid-induced flowering of Lemna aequinoctialis Welw [J]. Acta Physiol Plant, 2014, 36 (10): 2827-2833
9. Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress [J]. Environ Sci Pollut Res, 2017, 24 (3): 2273-2285
10. Xu LL, Fan ZY, Dong YJ, Kong J, Bai XY. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress [J]. Biol Plantarum, 2015, 59 (1): 171-182
11. Esim N, Atici ?. Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum) [J]. Front Life Sci, 2015, 8 (2): 124-130
12. Song YL, Dong YJ, Kong J, Tian XY, Bai XY, Xu LL. Effects of root addition and foliar application of nitric oxide and salicylic acid in alleviating iron deficiency induced chlorosis of peanut seedlings [J]. J Plant Nutr, 2017, 40 (1): 63-81
13. Yan F, Liu Y, Sheng H, Wang Y, Kang H, Zeng J. Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress [J]. Biol Plantarum, 2016, 60 (4): 686-694
14. Simaei M, Khavari-nejad RA, Saadatmand S, Bernard F, Fahimi H. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity [J]. Afr J Agr Res, 2011, 6 (16): 3775-3782
15. Liu S, Dong YJ, Xu LL, Kong J. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings [J]. Plant Growth Regul, 2014, 73 (1): 67-78
16. Yadu S, Dewangan TL, Chandrakar V, Keshavkant S. Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L [J]. Physiol Mol Biol Plants, 2017, 23 (1): 43-58
17. Babani F, Lichtenthaler HK. Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios [J]. J Plant Physiol, 1996, 148 (5): 555-566
18. Jin SH, Hong J, Li XQ, Jiang DA. Antisense inhibition of rubisco activase increases rubisco content and alters the proportion of rubisco activase in stroma and thylakoids in chloroplasts of rice leaves [J]. Ann Bot-London, 2006, 97 (5): 739-744
19. Cheng LL, Fuchigami LH. Rubisco activation state decreases with increasing nitrogen content in apple leaves [J]. J Exp Bot, 2000, 51 (351): 1687-1694
20. Long SP, Bernacchi CJ. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error [J]. J Exp Bot, 2003, 54 (392): 2393-2401
21. Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extract in different solvents [J]. Biochem Soc T, 1983, 11: 591-592
22. Cheng LL. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves [J]. J Exp Bot, 2003, 54 (381): 385-393
23. Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis [J]. Annu rev Plant Physiol, 1982, 33 (1): 317-345
24. Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo [J]. Annu Rev Plant Biol, 2008, 59: 89-113
25. Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? [J]. Trends Plant Sci, 2008, 13 (4): 178-182
26. 吴雪霞, 于力, 朱为民. 外源一氧化氮对NaCl胁迫下番茄幼苗叶绿素荧光特性的影响[J]. 中国生态农业学报, 2009, 17 (4): 746-751 [Wu XX, Yu L, Zhu WM. Effect of exogenous nitric oxide on chlorophyll fluorescence characteristics in tomato seedlings under NaCl stress [J]. Chin J Eco-Agri, 2009, 17 (4): 746-751]
27. Wu XX, Zhu XH, Chen JL, Yang SJ, Ding HD, Zha DS. Nitric oxide alleviates adverse salt-induced effects by improving the photosynthetic performance and increasing the anti-oxidant capacity of eggplant (Solanum melongena L.) [J]. J Horticult Sci Biotechnol, 2013, 88 (3): 352-360
28. 孙德智, 韩晓日, 彭靖, 范富. 外源水杨酸对NaCl胁迫下番茄幼苗PSⅡ光化学效率及光能分配利用的影响[J]. 园艺学报, 2016, 43 (8): 1482-1492 [Sun DZ, Han XR, Peng J, Fan F. The effect of exogenous salicylic acid on PSⅡ photochemical efficiency and distribution and utilization of luminous energy in tomato seedlings [J]. Acta Horticult Sin, 2016, 43 (8): 1482-1492]
29. He Y, Yu CL, Zhou L, Chen Y, Liu A, Jin JH, Hong J, Qi YH, Jiang D. Rubisco decrease is involved in chloroplast protrusion and rubisco-containing body formation in soybean (Glycine max.) under salt stress [J]. Plant Physiol Biochem, 2014, 74: 118-124
30. Lu KX, Cao BH, Feng XP, He Y, Jiang DA. Photosynthetic response of salt-tolerant and sensitive soybean varieties [J]. Photosynthetica, 2009, 47 (3): 381-387
31. Fatma M, Khan NA. Nitric oxide protects photosynthetic capacity inhibition by salinity in Indian mustard [J]. J Funct Environ Bot, 2014, 4 (2): 106-116
32. Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress [J]. Plant Signal Behav, 2015, 10 (3): 1-10
33. 吴雪霞, 朱为民, 朱月林, 陈建林. 外源一氧化氮对NaCl胁迫下番茄幼苗光合特性的影响[J]. 植物营养与肥料学报, 2007, 13 (6): 1105-1109 [Wu XX, Zhu WM, Zhu YL, Chen JL. Effects of exogenous nitric oxide on photosynthetic characteristics of tomato seedlings under NaCl stress [J]. Plant Nutr Fert Sci, 2007, 13 (6): 1105-1109]
34. Poór P, Gémes K, Horváth F, Szepesi?, Simon ML, Tari I. Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress [J]. Plant Biol, 2011, 13 (1): 105-114
35. Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview [J]. Photosynthetica, 2013, 51 (2): 163-190
36. Leong TY, Anderson JM. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. study on the distribution of chlorophyll-protein complexes [J]. Photosynth Res, 1984, 5 (2): 105-115
37. Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis [J]. Photosynth Res, 1994, 41 (3): 389-395
38. Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II [J]. BBA-Bioenergetics, 2012, 1817 (1): 182-193
39. Venema JH, Villerius L, van Hasselt PR. Effect of acclimation to suboptimal temperature on chilling-induced photodamage: comparison between a domestic and a high-altitude wild Lycopersicon species [J]. Plant Sci, 2000, 152 (2): 153-163
40. Qiu NW, Lu QT, Lu CM. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica [J]. New Phytol, 2003, 159 (2): 479-486
41. Hirotsu N, Makino A, Ushio A, Mae T. Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature [J]. Plant Cell Physiol, 2004, 45 (5): 635-644
42. 刘建新, 胡浩斌, 王鑫. 外源一氧化氮供体对镉胁迫下黑麦草幼苗活性氧代谢、光合作用和叶黄素循环的影响[J]. 环境科学学报, 2009, 29 (3): 626-633 [Liu JX, Hu HB, Wang X. Effects of an exogenous nitric oxide donor on active oxygen metabolism, photosynthesis and the xanthophylls cycle in Ryegrass (Lolium perenne L.) seedlings under cadmium stress [J]. Acta Sci Circumst, 2009, 29 (3): 626-633]
43. 刘建新, 王金成, 王鑫, 王瑞娟. 外源NO对NaHCO3胁迫下黑麦草幼苗光合生理响应的调节[J]. 生态学报, 2012, 32 (11): 3460-3466 [Liu JX, Wang JC, Wang X, Wang RJ. Regulation of exogenous nitric oxide on photosynthetic physiological response of Lolium perenne seedlings under NaHCO3 stress [J]. Acta Ecol Sin, 2012, 32 (11): 3460-3466]
44. 孙艳, 樊爱丽, 徐伟君. 水杨酸和草酸对光氧化胁迫下黄瓜叶片光合机构及叶黄素循环的影响[J]. 园艺学报, 2005, 32 (6): 1034-1038 [Sun Y, Fan AL, Xu WJ. Effects of salicylic acid and oxalate on photosynthetic system and xanthophyll cycle in cucumber leaves under photooxidative stress [J]. Acta Horticult Sin, 2005, 32 (6): 1034-1038]
45. 孙艳, 徐伟君, 范爱丽. 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J]. 应用生态学报, 2006, 17 (3): 399-402 [Sun Y, Xu WJ, Fan AL. Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light [J]. Chin J Appl Ecol, 2006, 17 (3): 399-402]
46.

相似文献/References:

[1]刘招龙,张绍铃,孙益林.水杨酸对梨叶感染轮纹菌后脂肪酸、叶绿素荧光参数和叶绿体超微结构的影响[J].应用与环境生物学报,2008,14(01):43.
 LIU Zhaolong,et al..Effect of Salicylic Acid on Fatty Acid, Chlorophyll Fluorescence Parameters and Chloroplast Ultrastructure of Pear Leaves Infected by Physalosproa piricola Nose[J].Chinese Journal of Applied & Environmental Biology,2008,14(03):43.
[2]刘招龙,张绍铃,高富永.外源水杨酸对梨叶片感染轮纹病菌后抗氧化酶活性及Ca2+浓度的影响[J].应用与环境生物学报,2011,17(02):215.[doi:10.3724/SP.J.1145.2011.00215]
 LIU Zhaolong,ZHANG Shaoling,GAO Fuyong.Effect of Exogenous Salicylic Acid on Antioxidant Enzymes and Ca2+ Density in Pear Leaves Infected by Physalosproa piricola Nose[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):215.[doi:10.3724/SP.J.1145.2011.00215]
[3]张笑,赵纯钦,黄静,等.外源脱落酸、水杨酸对小麦种子萌发及生理特性的影响[J].应用与环境生物学报,2014,20(01):139.[doi:10.3724/SP.J.1145.2014.00139]
 ZHANG Xiao,ZHAO Chunqin,HUANG Jing,et al.Effect of exogenous abscisic acid and salicylic acid on germination and physiological characteristics of wheat seed[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):139.[doi:10.3724/SP.J.1145.2014.00139]
[4]黄 宁 李聪娜 汤翰臣 郑清雷 凌 辉 陈如凯 阙友雄**.甘蔗泛素结合酶基因的克隆与表达分析[J].应用与环境生物学报,2018,24(04):1.[doi:10.3724/SP.J.1145.2017.11006]
 HUANG Ning,ZHENG Qinglei,LI Congna,et al.Cloning and expression analysis of an ubiquitin-conjugating enzyme gene in sugarcane[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):1.[doi:10.3724/SP.J.1145.2017.11006]

更新日期/Last Update: 2018-06-30