|本期目录/Table of Contents|

[1]周天阳,高景,贺俊东,等.高山草地环山样带异质坡向上3种植物的株高、叶片性状与生物量分配[J].应用与环境生物学报,2018,24(03):425-433.[doi:10.19675/j.cnki.1006-687x.2017.08029]
 ZHOU Tianyang,GAO Jing,et al.Plant height, leaf traits, and biomass allocation of three species at heterogeneous slope aspects along a transect in an alpine meadow[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):425-433.[doi:10.19675/j.cnki.1006-687x.2017.08029]
点击复制

高山草地环山样带异质坡向上3种植物的株高、叶片性状与生物量分配()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
425-433
栏目:
研究论文
出版日期:
2018-06-30

文章信息/Info

Title:
Plant height, leaf traits, and biomass allocation of three species at heterogeneous slope aspects along a transect in an alpine meadow
作者:
周天阳高景贺俊东薛晶月孙建王金牛徐波谢雨吴彦
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049 3华东师范大学生态与环境科学学院 上海 200241 4中国科学院地理科学与资源研究所 北京 100101 5国际山地综合发展中心 加德满都 6阿坝师范学院 阿坝 623002
Author(s):
ZHOU Tianyang1 2 GAO Jing1 3 HE Jundong1 XUE Jingyue1 SUN Jian4 WANG Jinniu1 5** XU Bo6 XIE Yu1 & WU Yan 1**
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy Sciences, Beijing 100049, China 3 School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 4 Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China 5 International Center for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal 6 Aba Teachers University, Aba 623002, China
关键词:
坡向植物功能性状异速生长生物量分配个体大小
Keywords:
slope aspect plant functional trait allometric scaling biomass allocation individual size
分类号:
Q948.114
DOI:
10.19675/j.cnki.1006-687x.2017.08029
摘要:
为了解坡向异质性生境对植物生长发育的影响机制,在位于青藏高原东缘的岷江源区的研究样地内,沿山脊划分出东南、西南和东北3个坡向,每个坡向上选择珠芽蓼(Polygonum viviparum)、盘花垂头菊(Cremanthodium discoideum Maxim.)和滨发草(Deschampsia littoralis)3种常见物种作为研究对象,对比其株高、叶片性状和生物量分配的变化,并测定不同坡向土壤环境因子. 结果显示:不同坡向间土壤环境差异明显;珠芽蓼和滨发草的株高在不同坡向上无显著差异,而盘花垂头菊株高依次为西南坡>东南坡>东北坡,3种植物比叶面积(SLA)均有显著变化且变化趋势均不同,在东北坡上珠芽蓼(161.30 ± 5.44 cm2/g)和盘花垂头菊(151.26 ± 3.36 cm2/g)具有最小的SLA,而滨发草(212.97 ± 11.39 cm2/g)最大;珠芽蓼的地下生物量高于地上生物量,而盘花垂头菊和滨发草地下-地上生物量分配格局则相反,3种植物的地下生物量比例在温度最低的东北坡均达到最高;珠芽蓼的地上-地下生物量分配在不同坡向皆为等速生长,而其余两种植物在个别坡向上呈现异速生长,且均为地下生物量积累速率大于地上部分. 因此,高山草地生态系统的不同坡向生境对植物的生长发育产生了显著影响,上述3种植物的株高及叶片性状对不同坡向的响应具有特异性,而在温度较低的坡向上3种植物均偏向把更多的生物量分配给地下部分. (图4 表6 参40)
Abstract:
In alpine ecosystems, the slope aspect is a critical factor that affects the growth and development of alpine plants. For a better understanding of the response mechanisms of plants to different slope aspects in an alpine meadow ecosystem, this study was conducted focusing on the variation of plant height, leaf traits, and biomass partitioning across three distinguished slope aspects. Mt. Kaka was selected as the study site, which is located at the upper reach of the Minjiang River on the eastern Qinghai-Xizang Plateau. Three slope aspects were divided along the round belt of Mt. Kaka, i.e., south-east, south-west, and north-east slopes; Polygonum viviparum, Cremanthodium discoideum Maxim., and Deschampsia littoralis were sampled at each slope aspect and plant height, specific leaf area (SLA), and biomass were measured. The results showed that the soil environment had significant (P < 0.05) differences across the three slope aspects. Plant height of P. viviparum and D. littoralis was not significantly (P > 0.05) different across the three slope aspects, whereas plant height of C. discoideum along the three slopes decreased in the order south-west > south-east > north-east. SLA of the three species was significantly (P < 0.05) different across the different slope aspects but did not follow a definite pattern. Both P. viviparum and C. discoideum had the lowest SLA values on the north-east slope, but D. littoralis did not. Both P. viviparum and D. littoralis had significantly (P < 0.05) different root biomass across the three slope aspects. The ratios of root to total biomass of the three species varied significantly (P < 0.05)across the different slope aspects, with the largest value observed on the colder north-east slope. The ratio of the above- and belowground biomass of P. viviparum was isometrically distributed across the different slope aspects, whereas the other two species showed allometric values on certain slope aspects, with greater belowground biomass accumulation. This study showed that the varied temperature produced by different slope aspects is an important factor determining plant growth and development, which were estimated by measuring plant height and leaf traits. Alpine meadow plants preferred to allocate greater belowground biomass on the colder slopes.

参考文献/References:

1 McIntyre S, Lavorel S, Landsberg J, Forbes TDA. Disturbance response in vegetation towards a global perspective on functional traits [J]. J Veg Sci, 1999, 10 (5): 621-630
2 Adler A, Karacic A, Weih M. Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation [J]. Plant Soil, 2008, 305 (1-2): 189-206
3 高景, 徐波, 王金牛, 周海燕, 王彦星, 吴彦. 南方灌草丛典型灌木不同叶片性状的相关性及其对不同光环境的响应[J]. 生态学杂志, 2015, 34 (9): 2424-2431 [Gao J, Xu B, Wang JN, Zhou HY, Wang YX, Wu Y. Correlations among leaf traits of typical shrubs and their responses to different light environments in shrub-grassland of southern China [J]. Chin J Ecol, 2015, 34 (9): 2424-2431]
4 吴彦, Onipchenko VG. 雪被对川西高山植被坡向性分异的影响[J]. 生态学报, 2007, 27 (12): 5120-5129 [Wu Y, Onipchenko VG. The impact of snow-cover on alpine vegetation type of different aspects in the west of Sichuan province [J]. Acta Ecol Sin, 2007, 27 (12): 5120-5129]
5 Canton Y, Del Barrio G, Sole-Benet A, Lazaro R. Topographic controls on the spatial distribution of ground cover in the Tabemas badlands of SE Spain [J]. Catena, 2004, 55 (3): 341-365
6 李新娥. 亚高寒草甸阳坡—阴坡梯度上植物功能性状及群落构建机制研究[D]. 兰州: 兰州大学, 2011 [Li XE. Plant functional traits and community assembly mechanism along the south-to north-facing slope gradient in a subalpine meadow [D]. Lanzhou: Lanzhou University, 2011]
7 Midgley J, Bond W. Leaf size and inflorescence size may be allometrically related traits [J]. Oecologia, 1989, 78 (3): 427-429
8 Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland [J]. J Ecol, 2012, 100 (6): 1422-1433
9 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28 (6): 844-852 [Zhang L, Luo TX. Advances in ecological studieson leaf lifespan and associated leaf traits [J]. Chin J Plant Ecol, 2004, 28 (6): 844-852]
10 Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. New handbook for standardised measurement of plant functional traits worldwide [J]. Aus J Bot, 2013, 61 (3): 167-234
11 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40 (8): 775-787 [Gao J, Wang JN, Xu B, Xie Y, He JD, Wu Y. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow [J]. Chin J Plant Ecol, 2016, 40 (8): 775-787]
12 Falster DS, Westoby M. Plant height and evolutionary games [J]. Trends Ecol Evol, 2003, 18 (7): 337-343
13 Moles AT, Leishman MR. The Seeding as Part of a Plant’s Life History Strategy. Seeding Ecology and Evolution [M]. Cambridge: Cambridge University Press, 2008: 217
14 Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 1991, 119 (3): 345-360
15 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 祁连山高寒草地甘肃臭草叶性状与坡向间的关系[J]. 植物生态学报, 2015, 39 (1): 23-31 [Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG. Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China [J]. Chin J Plant Ecol, 2015, 39 (1): 23-31]
16 Bloom AJ, Chapin lll FS, Mooney HA. Resource limitation in plants: an economic analogy [J]. Annu Rev Ecol Syst, 1985, 16: 363-392
17 朱强根, 金爱武, 王意锟, 邱永华, 李雪涛, 张四海. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析[J]. 植物生态学报, 2013, 37 (9): 811-819 [Zhu QG, Jing AW, Wang YK, Qiu YH, Li XT, Zhang SH. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens’ under different management modes: allometric scaling analysis [J]. Chin J Plant Ecol, 2013, 37 (9): 811-819]
18 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛. 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响[J]. 应用生态学报, 2012, 23 (5): 1226-1232 [Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN. Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan plateau, Southwest China [J]. Chin J Appl Ecol, 2012, 23 (5): 1226-1232]
19 Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil-nitrogen-a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biol Biochem, 1985, 17 (6): 837-842
20 Allen SE. Chemical Analysis of Ecological Material [M]. 2nd ed. Oxford: Blackwell, 1989
21 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 [Bao SD. Soil and Agricultural Chemistry Analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000]
22 Niklas KJ, Enquist BJ. Invariant scaling relationships for interspecific plant biomass production rates and body size [J]. PNAS, 2001, 98: 2922-2927
23 Warton DI, Weber NC. Common slope tests for bivariate errors-in-variables models [J]. Biometrical J, 2002, 44 (2): 161-174
24 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31 (1): 150-165 [Meng TT, Ni J, Wang GH. Plant functional traits, environments and ecosystem functioning [J]. Chin J Plant Ecol, 2007, 31 (1): 150-165]
25 侯兆疆, 赵成章, 李钰, 张茜, 马小丽. 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系[J]. 植物生态学报, 2014, 38 (3): 281-288 [Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL. Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland [J]. Chin J Plant Ecol, 2014, 38 (3): 281-288]
26 石福孙, 吴宁, 吴彦. 川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应[J]. 植物生态学报, 2010, 34 (5): 488-497 [Shi FS, Wu N, Wu Y. Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, northwestern Sichuan, China [J]. Chin J Plant Ecol, 2010, 34 (5): 488-497]
27 孙凤霞, 张伟华, 徐明岗, 张文菊, 李兆强, 张敬业. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 2010, 21 (11): 2792-2798 [Sun FX, Zhang WM, Xu MG, Zhang WJ, Li ZQ, Zhang JY. Effects of longterm fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil [J]. Chin J Appl Ecol, 2010, 21 (11): 2792-2798]
28 Xu QF, Jiang PK, Xu ZH. Soil microbial functional diversity under intensively managed bamboo plantations in southern China [J]. J Soil Sediment, 2008, 8 (3): 177-183
29 杨冬梅, 占峰, 张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J]. 植物生态学报, 2012, 36 (4): 281-291 [Yang DM, Zhan F, Zhang HW. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China [J]. Chin J Plant Ecol, 2012, 36 (4): 281-291]
30 Givnish TJ, Vermeij GJ. Sizes and shapes of liane leaves [J]. Am Nat, 1976, 110 (975): 743-778
31 马维玲, 石培礼, 李文华, 何永涛, 张宪洲, 沈振西. 青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异[J]. 中国科学: 生命科学, 2010, 40 (6): 533-543 [Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX. The change of individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau [J]. Sci China Life Sci, 2010, 40 (6): 533-543]
32 王琪, 徐程扬. 氮磷对植物光合作用及碳分配的影响[J]. 山东林业科技, 2005 (5): 63-66 [Wang Q, Xu CY. Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning [J]. J Shandong ForSci Technol, 2005 (5): 63-66]
33 Fabbro T, K?rner C. Altitudinal differences in flower traits and reproductive allocation [J]. Flora, 2004, 199 (1): 70-81
34 Mitchell RAC, Mitchell VJ, Driscoll SP, Franklin J, Lawlor DW. Effects of increased co2 concentration and temperature on growth and yield of winter-wheat at 2 levels of nitrogen application [J]. Plant Cell Environ, 1993, 16 (5): 521-529
35 Bradshaw AD. Evolutionary significance of phenotypic plasticity in plants [J]. Adv Genet, 1965, 13: 115-155
36 Wang LM, Li LH, Chen X, Tian X, Wang XK, Luo GP. Biomass allocation patterns across China’s terrestrial biomes [J]. PLoS ONE, 2014, 9 (4): e93566
37 王丽华, 高景, 王金牛, 徐波, 孙建, 朱忠福, 许积层, 吴彦. 高山草地长花马先蒿的性状和生物量分配对坡向的适应[J]. 应用与环境生物学报, 2017, 23 (4): 648-657 [Wang LH, Gao J, Wang JN, Xu B, Sun J, Zhu ZF, Xu JC, Wu Y. Adaptation of traits and biomass allocation of Pedicularis longiflora to different slope aspects in an alpine meadow [J]. Chin J Appl Environ Biol, 2017, 23 (4): 648-657]
38 Wu JB, Hong JT, Wang XD, Sun J, Lu XY, Fan JH, Cai YJ. Biomass partitioning and its relationship with the environmental factors at the alpine steppe in northern Tibet [J]. PLoS ONE, 2013, 8 (12): e81986
39 Gill RA, Jackson RB. Global patterns of root turnover for terrestrial ecosystems [J]. New Phytol, 2000, 147 (1): 13-31
40 Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia [J]. J Arid Environ, 2009, 73 (4-5): 521-528

更新日期/Last Update: 2018-06-30