|本期目录/Table of Contents|

[1]王彦伟,阮志勇,江旭,等.一株耐受糠醛的纤维素降解菌Bacillus siamensis BREC-11的分离与鉴定[J].应用与环境生物学报,2018,24(04):889-893.[doi:10.19675/j.cnki.1006-687x.2017.09006]
 Wang Yanwei,Ruan zhiyong,et al.Screening and identification of cellulose degrading bacterium Bacillus siamensis BREC-11 with tolerance to furfural[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):889-893.[doi:10.19675/j.cnki.1006-687x.2017.09006]
点击复制

一株耐受糠醛的纤维素降解菌Bacillus siamensis BREC-11的分离与鉴定()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
889-893
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Screening and identification of cellulose degrading bacterium Bacillus siamensis BREC-11 with tolerance to furfural
作者:
王彦伟阮志勇江旭张君陶吴波秦晗谭芙蓉胡国全何明雄
1农业部沼气科学研究所 成都 6100412农业部农业微生物资源收集与保藏重点实验室 北京 1000813四川师范大学 成都 610101
Author(s):
Wang Yanwei1 2 Ruan zhiyong2 JIANG Xu2 zhang juntao3 wu bo1 qin han1 tan furong1 hu guoquan1 & he mingxiong1**
1 Biogas Institute of Ministry of Agriculture, Chengdu 610041, China2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Beijing 100081, China3 Sichuan Normal University, Chengdu 610101, China
关键词:
竹虫Bacillus siamensis糠醛纤维素降解
Keywords:
Omphisa fuscidentalis Hampson Bacillus siamensis furfural cellulose-degrading
分类号:
X172
DOI:
10.19675/j.cnki.1006-687x.2017.09006
摘要:
糠醛是木质纤维素转化过程中产生的有毒的代谢抑制物,能阻碍菌株正常发酵,增加发酵成本. 为提高发酵菌株耐受糠醛的能力,促进对木质纤维素的高效转化,以糠醛为耐受物添加到培养基中,竹虫幼虫肠道作为分离源,经刚果红染色法初步筛选,分离到一株可耐受糠醛的纤维素降解菌株BREC-11;通过形态学观察、生理生化分析、细胞化学分析、16S rDNA序列比对等多相分类学方法鉴定;进一步进行了不同浓度糠醛耐受试验研究,并测定菌株的滤纸酶活(FPA)、CMC酶活、纤维二糖酶活(β-G). 确定菌株BREC-11属于芽孢杆菌属的一个种,将其定名为Bacillus siamensis BREC-11. 菌株BREC-11在含3.5 g/L糠醛的培养基中可以生长;在3.5 g/L糠醛的耐受浓度下,在30 ℃、150 r/min培养2 d后,滤纸酶活达到0.1 U/mL,CMC酶活达到0.21 U/mL,纤维二糖酶活达到0.07 U/mL. 本研究表明BREC-11是一株耐受糠醛的纤维素降解菌株,在生物炼制过程中具有一定的应用潜力. (图6 表1 参22)
Abstract:
Furfural is a toxic metabolic inhibitor that is created during the conversion of lignocellulose to produce fuel, which can retard fermentation and increase production costs. Thus, it is important for lignocellulosic conversion that the ability of the strain to resist furfural stress be improved. A cellulose-degrading bacterium BREC-11 with tolerance to furfural was isolated from the intestinal tract of Omphisa fuscidentalis Hampson larvae via the addition of furfural in the medium. Based on analyses of morphological observations, physiological and biochemical characterizations, and 16S rDNA sequences, strain BREC-11 was shown to represent a member of the genus Bacillus and was named B. siamensis BREC-11. To study the tolerance concentration of strain BREC-11, a wide range of furfural formaldehyde concentrations were tested and strain BREC-11 was shown to grow in the mineral medium containing furfural up to 3.5 g/L. Cellulase activity of strain BREC-11 was determined at the tolerable concentration of 3.5 g/L furfural after incubation at 30 ℃ and 150 r/min for 2 days. Results indicated that filter paper enzyme, CMC-Na enzyme, and β-glucosidase activity was 0.1 U/mL, 0.21 U/mL, and 0.07 U/mL, respectively. BREC-11 is a cellulose-degrading bacterium with resistance to furfural, which has potential application in future bio-refinery processes.

参考文献/References:

1 何明雄, 祝其丽, 潘科, 胡启春. 利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J]. 应用与环境生物学报, 2009, 15 (4): 579-584 [He MX, Zhu QL, Pan K, Hu QC. Progress in ethanol production with lignocellulosic biomass by different recombinant strains [J]. Chin J Appl Environ Biol, 2009, 15 (4): 579-579]
2 Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues [J]. Biomass Bioenergy, 2004, 26 (4): 361-375
3 Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae [J]. Biotechnol Biofuels, 2010, 3 (1): 2
4 Boyer LJ, Vega JL, Klasson KT, Clausen EC, Gaddy JL. The effects of furfural on ethanol production by Saccharomyces cereyisiae in batch culture [J]. Biomass Bioenergy, 1992, 3 (1): 41-48
5 Modig T, Liden G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase [J]. Biochem J, 2002, 363 (3): 769-776
6 He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Tang XY. Zymomonas mobilis: a novel platform for future biorefineries [J]. Biotechnol Biofuels, 2014, 7 (1): 101
7 Shui ZX, Qin H, Wu B, Ruan ZY, Wang JL, Dai LC, Hu GQ, He MX. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors [J]. Appl Microbiol. Biotechnol, 2015, 99 (13): 5739-5748
8 Field SJ, Ryden P, Wilson D, James SA, Roberts IN, Richardson DJ, Clarke TA. Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates [J]. Biotechnol Biofuels, 2015, 8 (1): 33
9 Peng L, Wang L, Che C, Yang G, Yu B, Ma Y. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural [J]. Bioresour Technol, 2013, 149: 169-176
10 Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, He MX. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein [J]. Appl Microbiol Biotechnol, 2015, 99 (12): 5363-5371
11 Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound [J]. Appl Environ Microbiol, 2009, 75 (11): 3765-3776
12 Ruan ZY, Wang YW, Song JL, Jiang S, Wang HM, Li Y, Zhao B. Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia [J]. Int J Syst Evol Microbiol, 2014, 64 (2), 518-521
13 Zhou S, Guo X, Wang H, Kong DL, Wang Y, Zhu J, Zhao B. Chromobacterium rhizoryzae sp. nov., isolated from rice roots [J]. Int J Syst Evol Microbiol, 2016, 66 (10): 3890-3896
14 Xu XW, Huo YY, Wang CS, Oren A, Cui HL, Vedler E, Wu M. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae [J]. Int J Syst Evol Microbiol, 2011, 61 (8): 1817-1822
15 Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL. Prospecting for cellulolytic activity in insect digestive fluids [J]. Comp Biochem Physiol B Biochem Mol Biol, 2010, 155 (2): 145-154
16 Shi W, Ding SY, Yuan JS. Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources [J]. Bioenerg Res , 2011, 4 (1): 1-10
17 Sumpavapol P, Tongyonk L, Tanasupawat S, Chokesajjawatee N, Luxananil P, Visessanguan W. Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand [J]. Int J Syst Evol Microbiol, 2010, 60 (10): 2364-2370
18 Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species [J]. J Ind Microbiol Biotechnol, 2014 , 41 (7): 1061-1070
19 Liu W, Wang Y, Yu Z, Bao J. Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum [J]. Bioresour Technol, 2012, 118: 13-18
20 Sanchez B, Bautista J. Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii [J]. Enzyme Microb Technol, 1988, 10 (5): 315-318
21 Wang X, Liu ZL, Zhang X, Ma M. A new source of resistance to 2-furaldehyde from Scheffersomyces (Pichia) stipitis for sustainable lignocellulose-to-biofuel conversion [J]. Appl Microbiol Biotechnol, 2017: 1-13
22 Wang X, Qin J, Zhu Q, Zhu B, Zhang X, Yao Q. Transcriptome analysis of Bacillus coagulans P38, an efficient producer of L-lactic acid from cellulosic hydrolysate, in response to 2-furfural stress [J]. Ann Microbiol, 2016, 66 (2): 889-894
23

更新日期/Last Update: 2018-08-25