|本期目录/Table of Contents|

[1]牛小云,郭爽,周健,等.大广高速不同护坡植被土壤微生物及理化性质[J].应用与环境生物学报,2018,24(04):758-765.[doi:10.19675/j.cnki.1006-687x.2017.09017]
 NIU Xiaoyun,GUO Shuang,ZHOU Jian,et al.Microorganisms and physico-chemical properties of soils with different slope-protecting vegetation in Daguang Highway[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):758-765.[doi:10.19675/j.cnki.1006-687x.2017.09017]
点击复制

大广高速不同护坡植被土壤微生物及理化性质()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
758-765
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Microorganisms and physico-chemical properties of soils with different slope-protecting vegetation in Daguang Highway
作者:
牛小云郭爽周健黄大庄高卓田池铭炎
河北农业大学园林与旅游学院 保定 071000
Author(s):
NIU Xiaoyun GUO Shuang ZHOU Jian HUANG Dazhuang** GAO Zhuotian & CHI Mingyan
College of Landscape and Travel, Agricultural?University?of Hebei, Baoding 071000, China
关键词:
紫穗槐杠柳鸡矢藤土壤理化性质土壤微生物末端限制性片段长度多态性(T-RFLP)
Keywords:
Amorpha fruticosa Periploca sepium Paederia scandens soil physical-chemical property soil microorganism terminal restriction fragment length polymorphism (T-RFLP)
分类号:
S15
DOI:
10.19675/j.cnki.1006-687x.2017.09017
摘要:
为了解不同护坡植被对高速公路边坡土壤质量恢复的影响,于2016年10月采集大广高速大名路段栽植6-7年的紫穗槐(Amorpha fruticosa)、杠柳(Periploca sepium)和鸡矢藤(Paederia scandens)3种护坡植被下土壤,分析0-10 cm、10-20 cm、20-30 cm土层的土壤理化性质,利用T-RFLP技术测定土壤微生物群落结构,并采用冗余分析(RDA)探讨微生物群落结构与土壤理化性质相关性. 结果表明:(1)鸡矢藤植被下土壤理化性质较好,同时3种护坡植被0-10 cm土层的土壤养分、持水量及孔隙度均高于10-20 cm和20-30 cm土层;(2)鸡矢藤0-10 cm和10-20 cm土层中粒径> 5 mm的团聚体含量高于杠柳和紫穗槐;(3)杠柳和鸡矢藤0-10 cm土层优势细菌种类和0-10 cm、10-20 cm、20-30 cm土层优势真菌种类数高于紫穗槐;(4)RDA结果显示土壤微生物群落结构主要受土壤物理性质的影响. 因此,土壤物理性质能敏感地随土壤质量变化而改变,可通过适当翻埋枯落物等措施改善土壤质量,进而改善边坡土壤生态环境. (图2 表3 参41)
Abstract:
In order to investigate the effect of different slope-protecting vegetation on soil restoration in the highways, we collected soils at depths of 0–10 cm, 10–20 cm, and 20–30 cm from areas planted with Amorpha fruticosa, Periploca sepium, and Paederia scandens for 6–7 years in the Daming road section of the Daguang Highway, in October 2016. The physico-chemical properties and microbial community of the soils were then analyzed. The soil microbial community was analyzed by terminal restriction fragment length polymorphism (T-RFLP). The correlation between the microbial community and the physico-chemical properties of the soils was determined by redundancy analysis (RDA). The results showed that (1) the physico-chemical properties were the best for soils with Paederia scandens; the nutrient content, water holding capacity, and porosity of the soils with the three types of slope-protecting vegetation were better in the 0–10 cm layer than in the other layers; (2) the contents of soil aggregates (diameter > 5 mm) were the highest in the 0–10 cm and 10–20 cm layers for the soil with Paederia scandens; (3) the dominant bacteria in the 0–10 cm layer and dominant fungi in the 0–10 cm, 10–20 cm, and 20–30 cm layers were higher in the soils with Pe. sepium and Pa. scandens than in the soil with A. fruticosa; and (4) results of RDA showed that the physical properties of the soils were the main factors that influenced the soil microbial community. The physical properties of the soils were sensitive to the change of soil quality. Soil quality can be improved by appropriate management measures, such as burying litter, which can subsequently improve the ecological environment of soils in sloping regions.

参考文献/References:

1. 秦红, 李昌晓, 任庆水. 不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响[J]. 生态学报, 2017, 37 (10): 1-11 [Qin H, Li CX, Ren QS. Effects of dfferent land use patterns on soil bacterial and fungal biodiversity in the hydro-fuctuation zone of the Three Gorges [J]. Acta Ecol Sin, 2017, 37 (10): 1-11]
2. Kong AYY, Scow KM, C6rdova-Kreylos AL, Holmes WE, Six J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems [J]. Soil Biol Biochem, 2011, 43: 20-30
3. Chapman SK, Newman GS. Biodiversity at the plant-soil interface: microbial abundance and community structure respond to litter mixing [J]. Oecologia, 2010, 162 (3): 763-769
4. Sarathchandra SU, Ghani A, Yeates GW, Burch G, Cox NR. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils [J]. Soil Biol Biochem, 2001, 33 (7/8): 953-964
5. Zhao J, Luo T, Li R, Li X, Tian LH. Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau [J]. Agric For Meteorol, 2016, 218: 114-121
6. 惠竹梅, 李华, 龙妍, 张瑾, 庞学良. 葡萄园行间生草体系中土壤微生物数量的变化及其与土壤养分的关系[J]. 园艺学报, 2010, 37 (9): 1395-1402 [Hui ZM, Li H, Long Y, Zhang J, Pang HL. Variation of soil microbial populations and relationships between microbial factors and soil nutrients in cover cropping system of vineyard [J]. Hort Plant J, 2010, 37 (9): 1395-1402]
7. Lydia P, Olander FN, Scatena WL. Impacts of disturbance initiated by road construction in a subtropicalcloud forest in the Luquillo Experimental Forest Puert Rico [J]. Forest Ecol Manage, 1998, 109: 33-49
8. Ewers RM, Kliskey AD, Walker S, Rutledge D, Harding JS, Didham RK. Past and future trajectories of forest loss in New Zealand [J]. Biol Conserv, 2006, 133 (3): 312-325
9. Grayston SJ, Prescott CE. Microbial communities in forest floors under four tree species in coastal British Columbia [J]. Soil Biol Biochem, 2005, 37: 1157-1167
10. Bochet E, Rubio J L, Poesen L. Modified topsoil islands within patchy Mediterranean vegetation in SE Spain [J]. Catena, 1999, 38: 23-44
11. Wu LQ, Ma K, Li Q, Ke XB, Lu YH. Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer [J]. Microb Ecol, 2009, 58 (4): 819-826
12. 林青, 曾军, 张涛, 马晶, 王重, 娄凯. 新疆富蕴地震断裂带植被恢复对土壤古菌群落的影响[J]. 生态学报, 2013, 33 (2): 454-463 [Lin Q, Zeng J, Zhang T, Ma J, Wang Z, Lou K. The influence of vegetation restoration on soil archaeal communities in Fuyun earthquake fault zone of Xinjiang [J]. Acta Ecol Sin, 2013, 33 (2): 454-463]
13. 陈金成, 张显国. 杠柳在高速公路绿化中的应用研究[J]. 公路交通科技, 2010 (12): 65-66 [Chen JC, Zhang XG. Study on the application of Periploca sepium on expressway greening [J]. J Highway Transportation Res Dev, 2010 (12): 65-66]
14. Bamba T, Sando T, Miyabashira A, Gyokusen K, Nakazawa Y, Su Y, Fukusaki E, Kobayashi A. Periploca sepium Bunge as a model plant for rubber biosynthesis study [J]. Zeitschrift Naturforsch C-J Biosci, 2007, 62: 579-582
15. 郭爽, 牛小云, 吴桐, 黄大庄, 高卓田, 池铭炎..不同植被恢复类型对高速公路边坡土壤质量的影响[J]. 土壤通报, 2018, 49 (1): 84-92 [Guo S, Niu XY, Wu T, Huang DZ, Gao ZT, Chi MY. Effect of restoration of vegetation types on soil quality of highway slope [J]. Chin J Soil Sci, 2018, 49 (1): 84- 92 ]
16. Prakash O, Pandey PK, Kulkarni GJ, Mahale KN, Shouche YS. Technicalities and glitches of terminal restriction fragment length polymorphism (T-RFLP) [J]. Indian J Microbiol, 2014, 54 (3): 255-261
17. Liu WT, Marsh TL, Cheng H, Forney LJ. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [J]. Appl Environ Microbl, 1997, 63 (11): 4516-4522
18. Nithya C, Pandian SK. Evaluation of bacterial diversity in Palk Bay sediments using terminal-restriction fragment length polymorphisms (TRFLP) [J]. Appl Biochem Biotechnol, 2012, 167 (6): 1763-1777
19. Egli K, Langer C, Siegrist HR, Zehnder AJ, Wagner M, Meer JR. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors [J]. Appl Environ Microbiol, 2003, 69 (6): 3213-3222
20. 国家林业局. 森林土壤分析方法[S]. 北京: 中国标准出版社, 2000 [State Forestry Administration. Forest Soil Standard Analysis Method [S]. Beijing: China Standards Press, 2000]
21. 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 [Bao SD. Soil Agro-Chemistrical Analysis [M]. Beijing: Agriculture Press, China, 2000]
22. 李娟, 廖洪凯, 龙健, 陈彩云. 喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响[J]. 生态学报, 2013, 33 (7): 2147-2156 [Li J, Liao HK, Long J, Chen CY. Effect of land use on the characteristics of organic carbon and labile organic carbon in soil aggregates in Karst mountain areas [J]. Acta Ecol Sin, 2013, 33 (7): 2147-2156]
23. Pasher J, King DJ. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information [J]. Remote Sens Environ, 2010, 114 (8): 1718-1732
24. Shumway SW. Filitative effects of a sand dune shrub on speciesgrowing beneach the shrub canopy [J]. Oecologia, 2000, 124 (1): 138-143
25. 任雪, 褚贵新, 宋日权, 王国栋, 乔旭. 准格尔盆地南缘绿洲—-荒漠过渡带梭梭 “肥岛”效应特征[J]. 土壤通报, 2010, 41 (10): 100-104 [Ren X, Zhu GX, Song RQ, Wang GD, Qiao X. The characteristics of “fertile island” on Haloxylon ammodendron at an Oasis-desert Ecotone in the South Edge of Junggar Basin [J]. Chin J Soil Sci, 2010, 41 (10): 100-104]
26. Ruiz TG, Zaragoza SR, CERRATO RF. Fertility islands around Prosopis laevigata and Pachycereus hollianus in the drylands of Zapotitlán Salinas, México [J]. J Arid Environ, 2007, 72 (7): 1202-1212
27. Bronick CJ, Lal R. Soil structure and management: areview [J]. Geoderma, 2005, 124: 3-22
28. Gill RA, Jackson RB. Global patterns of root tumover for terrestrial ecosystems [J]. New Phytol, 2000, 147: 13-31
29. LTshio M, Balser T, Kitayama K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest [J]. Plant Soil Environ, 2013, 365: 157-170
30. Chapman SK, Newman GS. Biodiversity at the plant-soil interface:microbial abundance and community structure respond to litter mixing [J]. Oecologia, 2010, 162 (3): 763-769
31. 尹承苗, 王功帅, 李园园, 陈学森, 吴树敬, 毛志泉. 连作苹果园土壤真菌的T-RFLP分析[J]. 生态学报, 2014, 34 (4): 837-846 [Yin CM, Wang GS, Li YY, Chen XS, Wu SJ, Mao ZQ. Assessment of fungal diversity in apple replanted orchard soils by T-RFLP analysis [J]. Acta Ecol Sin, 2014, 34 (4): 837-846]
32. Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex [J]. Science, 2004, 304 (5677): 1634-1637
33. Liu X, Lindemann WC, Whitford WG, Steiner RL. Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert [J]. Biol Fert Soils, 2000, 32 (3): 243-249
34. Spurgeon DJ, Keith AM, Schmidt O, Lammertsma DR, Faber JH. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties [J]. BMC Ecol, 2013, 13 (1): 46
35. Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment [J]. Appl Environ Microb, 2001, 67 (9): 4215-4224
36. Westion ILA. Root exutates: an overvieww [J]. Ecol Stud, 2003, 168: 235-256
37. Wardle D, Bardgett R, Klironomos J, Setala H, Van der Putten W, Wall D. Ecological linkages between aboveground and belowground biota [J]. Science, 2004, 304 (5677): 1629-1633
38. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C. Effects of biodiversity on the functioning of trophic groups and ecosystems [J]. Nature, 2006, 443 (7114): 989-992
39. 蒋珍茂, 赵秀兰, 魏世强, 张永华, 罗畅, 徐畅, 陈益银. 翻耕与改良剂施用对土壤植烟适应性的影响[J]. 西南大学学报(自然科学版), 2015, 37 (11): 122-130 [Jiang ZM, Zhao XL, Wei SQ,Zhang YH, Luo C, Xu C, Chen YY. Effects of tillage and amendment application on the suitability of soils for tobacco cultivation in tobacco-planting areas [J]. J SW Univ (Nat Sci Ed), 2015, 37 (11): 122-130]
40. 白银萍, 海江波, 杨刚, 黄晶, 董发勤, 刘明学, 聂小琴. 稻田土壤呼吸及酶活性对不同秸秆还田方式的响应[J]. 应用与环境生物学报, 2017, 23 (1): 28-32 [Bai YP, Huang HB, Yang G, Huang J, Dong FQ, Liu MX, Nie XQ. Effect of the straw returning pattern on soil respiration and enzyme activities [J]. Chin J Appl Environ Biol, 2017, 23 (1): 28-32]
41. Delgado A, Franco GM, Paez JI, Vega JM, Garmona E, Aviles M. Incidence of cotton seedling diseases caused by Rhizoctonia solani and Thielaviopsis basicola in relation to previous crop, residue management and nutrients availability in soils in SW Spain [J]. Phytopathology, 2005, 153: 710-714
42.

更新日期/Last Update: 2018-08-25