|本期目录/Table of Contents|

[1]黄成涛,黄位权,史鼎鼎,等.一株耐铅镉真菌Q7对香根草吸收累积重金属的效应[J].应用与环境生物学报,2018,24(04):901-907.[doi: 10.19675/j.cnki.1006-687x.2017.09030]
 HUANG Chengtao,HUANG Weiquan,SHI Dingding,et al.Effects of a lead- and cadmium-resistant fungal strain on the absorption of heavy metals by Vetiveria zizanioides[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):901-907.[doi: 10.19675/j.cnki.1006-687x.2017.09030]
点击复制

一株耐铅镉真菌Q7对香根草吸收累积重金属的效应()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
901-907
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Effects of a lead- and cadmium-resistant fungal strain on the absorption of heavy metals by Vetiveria zizanioides
作者:
黄成涛黄位权史鼎鼎徐少慧黄智刚蒋代华
广西大学农学院 南宁 530004
Author(s):
HUANG Chengtao HUANG Weiquan SHI Dingding XU Shaohui HUANG Zhigang & JIANG Daihua**
Agricultural College, Guangxi University, Nanning 530004, China
关键词:
耐性真菌重金属污染香根草植物-微生物联合修复
Keywords:
metal-resistant fungi heavy metal contamination Vetiveria zizanioides plant-microorganism combined remediation
分类号:
X53 : Q948.112.3
DOI:
10.19675/j.cnki.1006-687x.2017.09030
摘要:
采用双因素完全随机区组试验探讨耐性真菌联合香根草修复铅(Pb)、镉(Cd)复合污染土壤效应. 其中A因素为加菌量,设置0、1、3、5 g共4个水平,菌株代号Q7. B因素为铅镉添加量,设置Cd0Pb0、Cd10Pb400、Cd20Pb600、Cd30Pb800、Cd50Pb1200、Cd80Pb1800(单位为mg/kg)6种不同铅镉浓度水平. 结果表明,添加耐性真菌可显著提高香根草生物量,1、3、5 g加菌量处理可分别使香根草总干重增加量达到41.9%、74.9%、71.7%. 耐性真菌可促进香根草地上部与地下部对铅镉的富集,Cd2+ 80 mg/kg、Pb2+ 1 800 mg/kg处理下,1、3、5 g加菌量处理香根草对铅富集量比不加菌处理,地上部分别升高了120.6%、265.4%、242.9%,地下部分别升高了110.3%、278.2%、266.2%;对镉而言,地上部镉含量分别升高了113.2%、238.3%、217.3%,地下部分别升高了103.1%、298.8%、274.4%. 加菌可强化香根草对铅镉污染土壤的修复效果,且3 g加菌量强化香根草修复效果要优于1 g和5 g加菌量处理. 综上,将耐性真菌与重金属富集植物香根草在不同铅镉复合污染浓度下构建联合修复体系,显示了真菌对香根草修复铅镉污染土壤的显著强化效应. (图8 表2 参30)
Abstract:
A two-factor randomized complete block experiment was used to explore the remediation by a plant-microorganism combination on soils contaminated by lead (Pb) and cadmium (Cd). Factor A was the amount of fungi, for which four values were considered, namely, 0, 1, 3, and 5 g. Factor B was the level of contamination by lead and cadmium, for which six values were considered, namely, Cd0Pb0, Cd10Pb400, Cd20Pb600, Cd30Pb800, Cd50Pb1200, and Cd80Pb1800 (data in units of mg/kg). The results showed that the resistant fungi promoted the growth of vetiver (Vetiveria zizanioides). At weights of 1, 3, and 5 g, the resistant fungi increased the biomass of vetiver by 41.9%, 74.9%, and 71.7% respectively. The resistant fungi stimulated the absorption of lead and cadmium by both the aerial and underground parts of vetiver. In the presence of 80 mg/kg of Cd2+ and 1 800 mg/kg of Pb2+, the contents of lead in the aerial parts of vetiver were increased by 120.6%, 265.4%, and 242.9%, while the lead content in the underground parts were increased by 110.3%, 278.2%, and 266.2%, after the addition of 1 g, 3 g, and 5 g of fungi, respectively. The content of cadmium in the aerial parts increased by 113.2%, 238.3%, and 217.3%, while the content of cadmium in the underground parts increased by 103.1%, 298.8%, and 274.4%, after the addition of 1 g, 3 g, and 5 g of fungi, respectively. The addition of fungi strengthened the effect of V. zizanioides to remediate soils contaminated by lead and cadmium, and the remediation after the addition of 3 g of fungi was better than that after treatment with 1 g and 5 g of fungi. The combination of resistant fungi and the heavy metal enrichment plant, vetiver, under different concentrations of lead and cadmium showed that the fungi had a significant effect on the remediation of soils contaminated by lead and cadmium.

参考文献/References:

1 黄益宗, 郝晓伟, 雷鸣, 铁柏清. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32 (3): 409-417 [Huang YZ, Hao XW, Lei M, Tie BQ. The remediation technology and remediation practice of heavy metals-contaminated soil [J]. J Agro-Environ Sci, 2013, 32 (3): 409-417]
2 王英辉, 伍乃东. 铅污染土壤的植物修复技术研究[J]. 中国土壤与肥料, 2007, 44 (5): 6-10 [Wang YH, Wu ND. Recovery the soil polluted by plumbum applying phytoremediation echnology [J]. Soil Fertil Sci China, 2007, 44 (5): 6-10]
3 周际海, 袁颖红, 朱志保, 姚春阳, 张谷雨, 高琪. 土壤有机污染物生物修复技术研究进展[J]. 生态环境学报, 2015, 24 (2): 343-351 [Zhou JH, Yuan YH, Zhu ZB, Yao CY, Zhang GY, Gao Q. A review on bioremediation technologies of organic pollutants contaminated soils [J]. Ecol Environ Sci, 2015, 24 (2): 343-351]
4 刘然, 褚章正. 中国现行环境保护政策评述及国际比较[J]. 江汉论坛, 2013, 56 (1): 28-32
5 Zhao H, Xia B, Fan C, Zhao P, Shen S. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, southern China [J]. Sci Total Environ, 2012, 417 (7385): 45-54
6 Iosif G, Monica H. Application of principal component analysis in the pollution assessment with heavy metals of vegetable food chain in the old mining areas [J]. Chem Central J, 2012, 6 (1): 156
7 Singh A, Prasad SM. Reduction of heavy metal load in food chain: technology assessment [J]. Rev Environ Sci Bio/Technol, 2011, 10 (3): 199-214
8 Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li RH, Zhang ZQ. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review [J]. Ecotoxicol Environ Saf, 2016, 126: 111-121
9 李韵诗, 冯冲凌, 吴晓芙, 石润. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015, 35 (20): 6881-6890 [Li YH, Feng CL, Wu XF, Shi R. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils [J]. Acta Ecol Sin, 2015, 35 (20): 6881-6890]
10 Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals-concepts and applications [J]. Chemosphere, 2013, 91 (7): 869-881
11 Gonzálezalcaraz MN, Conesa HM, Alvarezrogel J. When liming and revegetation contribute to the mobilisation of metals: learning lessons for the phytomanagement of metal-polluted wetlands [J]. J Environ Manage, 2013, 116: 72-80
12 Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils [J]. Chemosphere, 2013, 90 (4): 1317-1332
13 Ali A, Guo D, Mahar A, Wang P, Ma F, Shen F, Li R, Zhang Z. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils [J]. Ecotoxicol Environ Saf, 2017, 139: 202-209
14 Cocozza C, Vitullo D, Lima G, Maiuro L, Marchetti M, Tognetti R. Enhancing phytoextraction of Cd by combining poplar (clone “I-214”) with Pseudomonas fluorescens and microbial consortia [J]. Environ Sci Pollut Res, 2014, 21 (3): 1796-1808
15 Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China [J]. J Hazard Mat, 2009, 162 (1):50-56
16 何琳燕, 李娅, 刘涛, 何文天, 王颖姣, 沈雪梅, 王梦驰, 俞谦, 盛下放. 龙葵根际和内生Cd抗性细菌的筛选及其生物学特性[J]. 生态与农村环境学报, 2011, 27 (6): 83-88 [He LY, Li Y, Liu T, He WT, Wang YJ, Shen XM, Wang MC, Yu Q, Sheng XF. Isolation and characterization of cadmium-resistant endophytic and rhizobacteria from Solanum nigrum in orefield [J]. J Ecol Rural Environ, 2011, 27 (6): 83-88]
17 潘风山, 陈宝, 马晓晓, 杨肖娥, 冯英. 一株镉超积累植物东南景天特异内生细菌的筛选及鉴定[J]. 环境科学学报, 2014, 34 (2): 449-456 [Pan FS, Chen B, Ma XX, Yang XE, Feng Y. Isolation and characterization of a specific endophytic bacterium from the Cd hyperaccumulator Sedum alfredii Hance [J]. Acta Sci Circumst, 2014, 34 (2): 449-456]
18 林春梅. 重金属污染土壤生物修复技术研究现状[J]. 环境与健康杂志, 2008, 25 (3): 273-275 [Lin CM. The research status of bio-remediation of heavy metals contaminated soils [J]. J Environ Health, 2008, 25 (3): 273-275]
19 Banerjee R, Goswami P, Pathak K, Mukherjee A. Vetiver grass: An environment clean - up tool for heavy metal contaminated iron ore mine-soil [J]. Ecol Eng, 2016, 90: 25-34
20 马文超, 刘媛, 孙晓灿, 陈锦平, 魏虹. 镉在土壤-香根草系统中的迁移及转化特征[J]. 生态学报, 2016, 36 (11): 3411-3418 [Ma WC, Liu Y, Sun XC, Chen JP, Wei H. Transfer and transformation characteristics of cadmium from soil to Vetiveria zizanioides [J]. Acta Ecol Sin, 2016, 36 (11): 3411-3418]
21 杨雪艳, 蒋代华, 史进纳, 黄位权, 黄成涛, 李伟. “双耐”细菌-香根草对铅镉复合污染土壤的修复机理[J]. 应用与环境生物学报, 2016, 22 (5): 884-890 [Yang XY, Jiang DH, Shi JN, Huang WQ, Huang CT, Li W. Remediation mechanism of “double-resistant” bacteria–Vetiveria zizanioides on Cd and Pb contaminated soil [J]. Chin J Appl Environ Biol, 2016, 22 (5): 884-890]
22 曾远, 罗立强. 土壤中特异性微生物促进植物修复重金属研究进展[J]. 岩矿测试, 2017, 36 (2): 97-109 [Zeng Y, Luo LQ. Research progress on heavy metal phytoremediation enhanced by specific microorganisms in soils [J]. Rock Anal, 2017, 36 (2): 97-109]
23 付骁, 蒋代华, 崔俊峰, 王晶. 矿区重金属污染土壤中铅镉抗性细菌的筛选及其活化作用研究[J]. 广西农业科学, 2010, 41 (2): 153-155 [Fu X, Jiang DH,Cui JF,Wang J. Screening of bacteria resistant to heavy metal contaminated soilin cadmium-lead mining area and their effects on activation ofcadmium-lead [J]. Guangxi Agric Sci, 2010, 41 (2): 153-155]
24 毛亮, 靳治国, 高扬, 周培, 支月娥, 施婉君, 陈晓燕. 微生物对龙葵的生理活性和吸收重金属的影响[J]. 农业环境科学学报, 2011, 30 (1): 29-36 [Mao L, Jin ZG, Gao Y, Zhou P, Zhi YE, Shi WJ, Chen XY. Effects of microorganism on physiological activity of Solanum nigrum and absorption of heavy metals [J]. J Agro-Environ Sci, 2011, 30 (1): 29-36]
25 黄文. 产表面活性剂根际菌协同龙葵修复镉污染土壤[J]. 环境科学与技术, 2011, 34 (10): 48-52 [Huang W. Biosurfactant-producing rhizobacteria assisted Solanum nigrum L. phytoremediation of Cd-polluted soils [J]. Environ Sci Technol, 2011, 34 (10): 48-52]
26 Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma, with endophytic Bacillus thuringiensis, GDB-1 [J]. J Hazard Mat, 2013, 250 (2): 477-483
27 Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV,.Piluzza G, Bullitta S, Glick BR. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J]. Soil Biol Biochem, 2005, 37 (2): 241-250
28 Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation [J]. Chemosphere, 2000, 41 (1-2): 197-207
29 Joner EJ, Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium [J]. New Phytol, 2010, 135 (2): 352-360
30 丁永祯, 李志安, 邹碧. 土壤低分子量有机酸及其生态功能[J]. 土壤, 2005, 37 (3): 243-250 [Ding YZ, Li ZA, Zou B. Low-molecular-weight organic acids and their ecological roles in soil [J]. Soils, 2005, 37 (3): 243-250]
31

相似文献/References:

[1]王建民,程伟,韩琅丰,等.垃圾堆肥在北方潮土地区的农用研究[J].应用与环境生物学报,1995,1(04):379.
 Wang Jianmin,Cheng Wei,Han Langfeng,et al.AGRICULTURAL STUDY ON REFUSE COMPOST APPLIED TO THE DAMP SOIL IN NORTH CHINA[J].Chinese Journal of Applied & Environmental Biology,1995,1(04):379.
[2]郭永灿,王振中,张友梅,等.重金属对蚯蚓的毒性毒理研究[J].应用与环境生物学报,1996,2(02):132.
 Guo Yongcan,Wang Zhenzhong,Zhang Youmei,et al.STUDIES ON TOXICITY AND TOXICOLOGY OF HEAVY METALS TO EARTHWORMS IN POLLUTED SOILS[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):132.
[3]高玉荣,许木启.乐安江重金属污染对浮游植物群落结构的影响[J].应用与环境生物学报,1996,2(02):175.
 Gao Yurong,Xu Muqi.A STUDY ON THE EFFECT OF HEAVY METAL POLLUTION ON PHYTOPLANKTON COMMUNITY STRUCTURE IN THE LEAN RIVER[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):175.
[4]朱江,任淑智.德兴铜矿废水对乐安江底栖动物群落的影响[J].应用与环境生物学报,1996,2(02):162.
 Zhu Jiang,Ren Shuzhi.EFFECT OF THE WASTEWATER FROM A COPPER MINE ON BENTHOS COMMUNITY IN THE LEAN RIVER[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):162.
[5]刘延盛,鲁家米,周晓阳.Pb在豌豆幼苗细胞中的超微结构分布与毒性研究[J].应用与环境生物学报,2007,13(05):647.
 LIU Yansheng,et al..Cellular Damages and Accumulation of Pb Polluted Pisum sativum L.:Implication for Phytoremediation[J].Chinese Journal of Applied & Environmental Biology,2007,13(04):647.
[6]曹哲明,杨健.不同浓度Cd2+对鲤鱼基因组DNA的影响[J].应用与环境生物学报,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
 CAO Zheming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
[7]焦伟,卢少勇,李光德,等.环太湖主要进出河流重金属污染及其生态风险评价[J].应用与环境生物学报,2010,16(04):577.[doi:10.3724/SP.J.1145.2010.00577]
 JIAO Wei,LU Shaoyong,LI Guangde,et al.Heavy Metal Pollution of Main Inflow and Outflow Rivers Around the Taihu Lake and Assessment of Its Potential Ecological Risk[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):577.[doi:10.3724/SP.J.1145.2010.00577]
[8]王德胜,陈兰,敬小兵,等.螯合剂和表面活性剂辅助金福菇修复重金属污染土壤[J].应用与环境生物学报,2012,18(01):100.[doi:10.3724/SP.J.1145.2012.00100]
 WANG Desheng,CHEN Lan,JING Xiaobing,et al.Chelator- and Surfactant-assisted Remediation of Heavy Metal Contaminated Soil by Tricholoma lobayense Heim[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):100.[doi:10.3724/SP.J.1145.2012.00100]
[9]黄志钧,李大平.重金属铜离子抗性菌株的筛选和吸附性能[J].应用与环境生物学报,2012,18(06):964.[doi:10.3724/SP.J.1145.2012.00964]
 HUANG Zhijun,LI Daping.Cu2+ Biosorption by a Highly Copper Resistant Bacterium Isolated from Soil[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):964.[doi:10.3724/SP.J.1145.2012.00964]
[10]李敬伟,湛方栋,何永美,等. 云南会泽铅锌矿区土壤理化与生物学性质[J].应用与环境生物学报,2014,20(05):906.[doi:10.3724/SP.J.1145.2014.01047]
 LI Jingwei,ZHAN Fangdong,HE Yongmei,et al. Physicochemical and biological properties of soils from Huize lead-zinc mining area of Yunnan[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):906.[doi:10.3724/SP.J.1145.2014.01047]

更新日期/Last Update: 2018-08-25