|本期目录/Table of Contents|

[1]王满堂,卢宏典,程栋梁,等.降水和气温对中国森林降水利用效率的影响[J].应用与环境生物学报,2018,24(04):718-722.[doi: 10.19675/j.cnki.1006-687x.2017.09041]
 WANG Mantang,LU Hongdian,CHENG Dongliang**,et al.Effects of precipitation and temperature on rain-use efficiency of China’s forests[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):718-722.[doi: 10.19675/j.cnki.1006-687x.2017.09041]





Effects of precipitation and temperature on rain-use efficiency of China’s forests
1枣庄学院城市与建筑工程学院 枣庄 277160 2福建师范大学地理科学学院 福州 350007
WANG Mantang1 LU Hongdian2 CHENG Dongliang2** ZHENG Yuan2 ZHONG Quanlin2 GUO Bingqiao2 MA Yuzhu2 & JIN Bingjie2
1 College of City and Civil Engineering, Zaozhuang University, Zaozhuang 277160, China 2 College of Geographical Science, Fujian Normal University, Fuzhou 350007, China
rain-use efficiency forest community net primary production precipitation temperature
全球气候变化导致频繁的降水或干旱,降水量是影响生态系统生产力的关键因子. 根据全国17种类型的森林、1 266个森林样地的调查数据,分析中国不同类型森林的降水利用效率(Rain-use Efficiency,RUE)差异、与年均降水量的关系以及其他环境因子对RUE的影响. 结果表明:(1)中国森林的RUE平均值为1.21 g m-2 mm-1,RUE与降水量呈负相关关系;(2)阔叶林(主要由被子植物构成)的RUE均值显著高于针叶林(主要由裸子植物构成),阔叶林比针叶林更适应降水量的变化;(3)落叶林的RUE均值显著高于常绿林,随着降水量增加,落叶林的RUE值降低直到达到一个阈值,而常绿林的RUE值与降水量没有显著的相关性;(4)纬度和年平均温度是复合环境因子中RUE的主要限制因子. 综上所述,随着降水量增加,中国森林群落的RUE下降直至阈值,气温是影响中国森林RUE的主要环境因子. (图2 表3 参24)
Water plays an important role in the growth of plants. It is important to investigate the responses of different ecosystems to precipitation patterns, especially in terms of global changes involving extreme precipitation or drought. However, little is known about the rain-use efficiency (RUE) in China’s forests and the correlation of the RUE with the precipitation and other environmental factors. Furthermore, it is unclear whether differences in the forest types or functional groups result in divergent RUE patterns. To investigate the RUE in China’s forests, we analyzed the data from 1 266 sampling plots from 17 forest types. The results indicated that: (1) the mean RUE of China’s forests is 1.21 g m-2 mm-1. The RUE and precipitation are negatively correlated in all the 17 forest types; (2) the average RUE of broadleaved forests (mainly angiosperms) is higher than that of coniferous forests (mainly gymnosperms), and the angiosperms are more adaptable to changes in the precipitation than gymnosperms; (3) the average RUE of deciduous forests is higher than that of the evergreen forests. The RUE of deciduous forests declines with increasing precipitation to a threshold value. However, the RUE of evergreen forests are unaffected by changes in the precipitation; and (4) the latitude and mean annual temperature are the major factors constraining the RUE under comprehensive environmental factors. We conclude that the mean RUE declines with increasing precipitation to a threshold value, and that the temperature is a crucial factor for RUE.


1 Austin AT. Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawaii [J]. Ecology, 2002, 83 (2): 328-338
2 Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. Climate extremes: observations, modeling, and impacts [J]. Science, 2000, 289 (5487): 2068-2074
3 Lehouerou HN. Rain use efficiency: a unifying concept in arid-land ecology [J]. J Arid Environ, 1984, 7 (3): 213-247
4 Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG. Convergence across biomes to a common rain-use efficiency [J]. Nature, 2004, 429 (6992): 651-654
5 Paruelo JM, Lauenroth WK, Burke IC, Sala OE. Grassland precipitation-use efficiency varies across a resource gradient [J]. Ecosystems, 1999, 2 (1): 64-68
6 Ruppert JC, Holm A, Miehe S, Muldavin E, Snyman HA, Wesche K, Linst?dter A. Meta-analysis of ANPP and rain-use efficiency confirms indicative value for degradation and supports non-linear response along precipitation gradients in drylands [J]. J Veg Sci, 2012, 23 (6): 1035-1050
7 王云霓, 熊伟, 王彦辉, 于澎涛, 曹恭祥, 徐丽宏, 左海军, 贺亮亮. 宁夏六盘山3种针叶林降水利用效率的年际变化及其对气象因子的响应[J]. 植物生态学报, 2013, 37 (10): 901-911 [Wang YN, Xiong W, Wang YH, Yu PT, Cao GX, Xu LH, Zuo HJ, He LL. Interannual variation of rain-use efficiency of three coniferous forests and their response to meteorological factors in Liupan Mountains of Ningxia [J]. Chin J Plant Ecol, 2013, 37 (10): 901-911]
8 Xu X, Sherry RA, Niu S, Li D, Luo Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie [J]. Global Change Biol, 2013, 19 (9): 2753-2764
9 Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau [J]. Ecology, 2008, 89 (8): 2140-2153
10 Hu Z, Yu G, Fan J, Zhong H, Wang S, Li S. Precipitation-use efficiency along a 4500-km grassland transect [J]. Global Ecol Biogeogr, 2010, 19 (6): 842-851
11 Yang Y, Fang J, Fay PA, Bell JE, Ji C. Rain use efficiency across a precipitation gradient on the Tibetan Plateau [J]. Geophys Res Lett, 2010, 37 (15): 78-82
12 Lauenroth WK, Burke IC, Paruelo JM. Patterns of production and precipitation-use efficiency of winter wheat and native grasslands in the central great plains of the United States [J]. Ecosystems, 2010, 3 (4): 344-351
13 罗天祥. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院自然资源综合考察委员会, 1996 [Luo TX. Patterns of net primary productivity for Chinese major forest types and their mathematical models [D]. Beijing: Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences, 1996]
14 卢玲, 李新, 黄春林, Veroustraete F. 中国西部植被水分利用效率的时空特征分析[J]. 冰川冻土, 2007, 29 (5): 777-784 [Lu L, Li L, Huang CL, Veroustraete F. Analysis of the spatio-temporal characteristics of water use efficiency of vegetation in West China [J]. J Glac Geocr, 2007, 29 (5): 777-784]
15 StéPhane P, Lawrence BF, Karrin PA, Bruce GJ, Kai M, Natascha K, Andrew B, Alan GB. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques [J]. Global Change Biol, 2006, 12 (2): 294-310
16 Tomlinson KW, Poorter L, Sterck FJ, Borghetti F, Ward D, Steven de Bie, F van Langevelde. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents [J]. J Ecol, 2013, 101 (2): 430-440
17 Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R. Water-use strategies of six co-existing Mediterranean woody species during a summer drought [J]. Oecologia, 2011, 166 (1): 45-57
18 Zhang Y, Meinzer F C, Qi J, Goldstein G, Cao K. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees [J]. Plant Cell Environ, 2013, 36 (1): 149-158
19 Austin AT, Vitousek PM. Nutrient dynamics on a precipitation gradient in Hawai’I [J]. Oecologia, 1998, 113 (4): 519-529
20 Chapin FS III, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology [M]. New York: Springer-Verlag, 2002
21 叶辉, 王军邦, 黄玫, 齐述华. 青藏高原植被降水利用效率的空间格局及其对降水和气温的响应[J]. 植物生态学报, 2012, 36 (12): 1237-1247 [Ye H, Wang JB, Huang M, Qi SH. Spatial pattern of vegetation precipitation use efficiency and its response to precipitation and temperature on the Qinghai-Xizang Plateau of China [J]. Chin J Plant Ecol, 2012, 36 (12): 1237-1247]
22 Wilcox BP, Dowhower SL, Teague WR, Thurow TL. Long-term water balance in a semiarid shrubland [J]. Rangeland Ecol Manag, 2006, 59 (6): 600-606
23 Tan Z, Cao M, Yu G, Tang J, Deng X, Song Q, Tang Y, Zheng Z, Liu W, Feng Z, Deng Y, Zhang J, Liang N, Zhang Y. High sensitivity of a tropical rainforest to water variability: evidence from 10 years of inventory and eddy flux data [J]. J Geophys Res-Atmos, 2013, 118 (16): 9393-9400
24 Ponce Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA, Scalley SG, Kitchen SG, McClaran MP, McNab WH, Montoya DS, Morgan JA, Peters DP, Sadler EJ, Seyfried MS, Starks PJ. Ecosystem resilience despite large-scale altered hydroclimatic conditions [J]. Nature, 2013, 494 (7437): 349-352

更新日期/Last Update: 2018-08-25