|本期目录/Table of Contents|

[1]徐小萍,陈晓慧,吕科良,等.龙眼漆酶家族成员全基因组结构与功能分析[J].应用与环境生物学报,2018,24(04):833-844.[doi: 10.19675/j.cnki.1006-687x.2017.09047]
 XU Xiaoping,CHEN Xiaohui,L? Keliang,et al.Genome-wide identification and function analysis of the Laccase gene family in Dimocarpus longan Lour.[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):833-844.[doi: 10.19675/j.cnki.1006-687x.2017.09047]





Genome-wide identification and function analysis of the Laccase gene family in Dimocarpus longan Lour.
徐小萍陈晓慧吕科良陈 旭陈裕坤林玉玲赖钟雄
福建农林大学园艺植物生物工程研究所 福州 350002
XU Xiaoping CHEN Xiaohui L? Keliang CHEN Xu CHEN Yukun LIN Yuling & LAI Zhongxiong**
Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
为了解龙眼漆酶(DlLAC)家族的生物学功能采用生物信息学分析方法进行龙眼基因组LAC基因成员鉴定蛋白结构域及特性、启动子顺式作用元件、分子进化树分析、体胚发生过程和组织器官特异表达的FPKM分析以及可能互作的miRNA预测. 结果显示:DlLAC家族基因包含42个基因成员分为7大类基因家族成员内含子数量1-8个不等以5个为主其中DlLAC15-1中存在600 bp短串联重复序列DlLAC蛋白结构域共存在5种类型均属于铜蓝蛋白以3个铜蓝氧化酶结构域为主DlLAC蛋白均为分泌型蛋白亚细
Dimocarpus longan Lour. Laccase family gene identification functional analysis miRNA prediction.
为了解龙眼漆酶(DlLAC)家族的生物学功能,采用生物信息学分析方法进行龙眼基因组LAC基因成员鉴定,蛋白结构域及特性、启动子顺式作用元件、分子进化树分析、体胚发生过程和组织器官特异表达的FPKM分析以及可能互作的miRNA预测. 结果显示:DlLAC家族基因包含42个基因成员,分为7大类;基因家族成员内含子数量1-8个不等,以5个为主,其中DlLAC15-1中存在600 bp短串联重复序列;DlLAC蛋白结构域共存在5种类型,均属于铜蓝蛋白,以3个铜蓝氧化酶结构域为主;DlLAC蛋白均为分泌型蛋白,亚细胞定位预测在胞外,包含2个以上糖基化位点,具有多个保守的motif;5端调控序列预测分析,DlLAC可能具有多个转录起始位点;DlLACp启动子序列均包含大量非生物胁迫应激响应元件、胚乳特异表达元件及MYB结合位点,推测MYB可能通过DlLAC进而调控龙眼胚胎发育. DlLAC9-1p、DlLAC12p、DlLAC17-2p含黄酮类化合物合成调控的MYB结合位点,可能参与龙眼生长发育过程中种子成熟和果皮成色的色素合成途径;DlLAC家族成员可能参与不同体胚发育过程和不同组织器官形态建成. 42个龙眼漆酶成员共有28个受miRNA调控,13个成员受miR397调控,可能与木质素合成相关,8个成员受miR1535调控. 非miR397调控的成员可能发挥其他重要的生物学功能. 本研究表明,DlLAC家族成员在龙眼生长发育过程中除了参与木质素合成以外,还可能参与胚胎发育、胚乳发育、色素合成、组织器官特异表达等重要生物学功能,表现其功能上的多样性. (图9 表2 参38)
To investigate the biological function of the Laccase (DlLAC) gene family in Dimocarpus longan Lour., the DlLAC gene family members were identified. Additionally, the gene structure, protein domain, transcription start site, cis-acting element of promoter, phylogenetic trees, and FPKM analysis of somatic embryogenic cultures at different developmental stages and in different tissues or organs of longan that possibly interacted with miRNAs in the longan genome were predicted by bioinformatic analysis. The possible biological functions of DlLAC were analyzed in longan. In total, 42 members of the DlLAC gene family were identified in 7 groups. The gene structure analysis indicated that the number of introns in the DlLAC gene family ranged from 1 to 8, with the majority being 5, and only DlLAC15-1 contained 600 base pairs short tandem repeats. The conserved domains of proteins were divided into five types, all of which belonged to the covelline albumen family, and contained 1–5 protein domains and three predominant copper blue oxidase domains. DlLAC proteins belonged to the secretory pathway, had subcellular localization in the outer cell, and contained more than two glycosylation sites and multiple conserved motifs. The transcription start site and cis-acting elements predicted that the Laccase gene family might have multiple transcription start sites. The cis-acting elements of the promoter contained many abiotic stress response elements, endosperm-specific expression response elements, and MYB binding sites, which suggest that MYB should probably regulate the development of longan embryos through DlLAC. DlLAC9-1p, DlLAC12p, and DlLAC17-2p contained MYB binding sites that regulated the synthesis of flavonoid compounds, which suggested that the process of seed ripening and fruit color formation might be influenced during the process of longan growth and development. Members of the DlLAC gene family might be involved in the development of somatic embryos and the morphogenesis of different tissues and organs. A total of 30 longan Laccase sequences were likely to be regulated by miRNAs, 13 of which were mainly regulated by miR397 and might be associated with lignin synthesis, rather than members of miR397 regulation that might play other important biological functions. DlLAC gene family members might be involved in lignin biosynthesis, as well as the development of somatic embryos, different tissues, endosperm development, pigment synthesis, and other important biological functions during the growth and development of longan, showing their diverse functions.


1 Mayer AM, Staples RC. Laccase: new functions for an old enzyme [J]. Phytochemistry, 2002, 60 (6): 551-565
2 Pezet R, Pont V, Hoang-Van K. Enzymatic detoxication of stilbenes by Botrytis cinerea and inhibition by grape berries proanthrocyanidins [C]. Proceedings of the 10th International Botrytis Symposium, Heraklion, Crete, Greece, 1992: 881-886
3 Sterjiades R, Dean JF, Eriksson KE. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols [J]. Plant Physiol, 1992, 99 (3): 1162
4 Ranocha P, Goffner D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar [J]. Plant Physiol, 2002, 129 (1): 145-155
5 Liang M, Davis E, Gardner D, Cai X, Wu Y. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224 (5): 1185-1196
6 Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le B P. Disruption of laccase 4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems [J]. Plant Cell, 2011, 23 (3): 1124-37
7 Sterjiades R, Dean JFD, Gamble G, Himmelsbach DS, Eriksson KEL. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures: reactions with monolignols and lignin model compounds [J]. Planta, 1993, 190 (1): 75-87
8 刘保华, 肖茜, 冯超, 孙进华, 王家保. 荔枝漆酶基因LcLac的克隆与表达分析[J]. 园艺学报, 2012, 39 (5): 853-860 [Liu BH, Xiao Q, Feng C, Sun JH, Wang JB. Cloning and expression analysis of the laccase gene from Litchi chinensis [J]. Acta Horticult Sin, 2012, 39 (5): 853-860]
9 赵先炎, 庞明利, 赵强, 任怡然, 郝玉金. 番茄漆酶基因LeLACmiR397的克隆与表达分析[J]. 园艺学报, 2015, 42 (7): 1285-1298. [Zhao X Y, Pang M L, Zhao Q, Ren YR, Hao YJ. Cloning and expression analysis of tomato LeLAC~ (miR397) gene [J]. Acta Horticult Sin, 2015, 42 (7): 1285-1298]
10 Pourcel L, Routaboul JM, Kerhoas L. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat [J]. Plant Cell, 2005, 17 (11): 2966
11 Turlapati PV, Kim KW, Davin LB, Lewis NG. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function (s) [J]. Planta, 2011, 233 (3): 439-470
12 Liu Q, Le L, Wang X, Shen Z, Zheng L. Comprehensive analysis of rice Laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis [J]. Intern J Molec Sci, 2017, 18 (2): 209
13 Roy JL, Blervacq AS, Créach A, Huss B, Hawkins S, Neutelings G. Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax [J]. BMC Plant Biol, 2017, 17 (1): 124
14 Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development [J]. FEBS Lett, 2006, 580 (21): 5111-5116
15 Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L. Genome-wide sequencing of longan (Dimocarpus longan Lour. ) provides insights into molecular basis of its polyphenol-rich characteristics [J]. Gigascience, 2017, 6 (5): 1-14
16 Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination [J]. Plant Cell, 2004, 16 (Suppl): S84-S97
17 Lu S, Li Q, Wei H. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa [J]. Proc Natl Acad Sci USA, 2013, 110 (26): 10848-10853
18 Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets [J]. Cell, 2002, 110 (4): 513-520
19 Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T. The rice annotation project database (RAP-DB): hub for Oryza sativa ssp. japonica genome information [J]. Nucleic Acids Res, 2006, 34 (Database issue): D741-D744
20 Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function [J]. Annu Rev Nutr, 2002, 22 (1): 439-458
21 Vanholme R, Morreel K, Ralph J, Boerjan W. Lignin engineering [J]. Curr Opin Plant Biol, 2008, 11 (3): 278-285
22 王国栋. 过量表达棉花分泌型漆酶拟南芥对酚酸类物质和三氯苯酚的植物体外修复[D]. 上海: 中国科学院上海生命科学研究院, 2004 [Wang GD, Phytoremediation ex planta of phenolics and trichlorophenol by overexpressing a cotton secretory Laccase in Arabidopsis [D]. Shanghai: Shanghai Institute of Life Sciences, Chinese Academy of Sciences, 2004
23 Bryan AC, Jawdy S, Gunter L, Gjersing, E, Sykes R, Hinchee MAW. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release [J]. Plant Biotechnol J, 2016, 14 (10): 2010-2020
24 Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph SA. Tricin, a flavonoid monomer in monocot lignification [J]. Plant Physiol, 2015, 167 (4): 1284-1295
25 de Godoy F, Bermudez L, Lira BS, de Souza AP, Elbl P, Demarco D, Alseekh S. Galacturonosyl transferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot, 2013, 64: 2449-2466
26 Wallace G, Fry SC. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds [J]. Phytochemistry, 1999, 52 (5): 769-773
27 Hoopes JT, Dean JF. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera [J]. Plant Physiol Biochem, 2004, 42 (1): 27-33
28 Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure [J]. Plant Physiol, 2010, 153 (3): 895-905
29 Vasin A, Klotchenko S, Puchkova L. Phylogenetic analysis of six-domain multi-copper blue proteins [J]. PLoS Curr, 2013, 5: e1002979-e1002979
30 Zhou J, Lee C, Zhong R, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis [J]. Plant Cell, 2009, 21 (1): 248-266
31 Dudkina NV, Oostergetel GT, Lewejohann D, Braun HP, Boekema EJ. Dual-axis cryo-electron tomography on intact mitochondria reveals the association of ATP synthase into oligomeric chains [J]. Biochim Biophys Acta - Bioenergetics, 2010, 1797 (7): 30
32 Wang CY, Zhang S, Yu Y, Luo Y, Liu Q, Ju C. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis [J]. Plant Biotechnol J, 2014, 12 (8): 1132-1142
33 Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching [J]. Nat Biotechnol, 2013, 31 (9): 848-852
34 Huang JH, Qi YP, Wen SX, Peng G, Chen XM , Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis [J]. Sci Rep, 2016, 6 (22900): 22900
35 Cattaneo AM, Grzeskowiak L, Colaiacovo M, Faccioli P. Bioinformatic identification of a putative microRNA-transcription factor network motif in the regulation of laccase genes in peach (Prunus persica) [J]. 2012, 9: 85-86
36 马圣运. Os-miR408的表达模式及其在水稻种子发育中的功能[D]. 杭州: 浙江大学, 2012 [Ma SY. Expression pattern and function of miR408 in seed development of rice (Oryza sativa) [D]. Hangzhou: Zhengjiang University, 2012
37 Zhang J, Xue B, Gai M, Song S, Jia N, Sun H. Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch. [J]. Front Plant Sci, 2017, 8: 1-18
38 Kumar V, Staden J V. New insights into plant somatic embryogenesis: an epigenetic view [J]. Acta Physiol Plantm, 2017, 39 (9): 194

更新日期/Last Update: 2018-08-25