|本期目录/Table of Contents|

[1]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775-782.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):775-782.[doi:10.19675/j.cnki.1006-687x.2017.10003]
点击复制

不同树龄茶树根际土壤细菌多样性的T-RFLP分析()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
775-782
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages
作者:
王海斌陈晓婷丁力邱丰艳叶江华贾小丽孔祥海
1龙岩学院生命科学学院 龙岩 364012 2福建农林大学福建省农业生态过程与安全监控重点实验室 福州 350002 3武夷学院 武夷山 354300
Author(s):
WANG Haibin1 2** CHEN Xiaoting1 DING Li1 QIU Fengyan1 YE Jianghua3 JIA Xiaoli3 & KONG Xianghai1
1 College of Life Sciences, Longyan University, Longyan 364012, China 2 Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China 3 Wuyi University, Wuyishan 354300, China
关键词:
茶树树龄根际土壤细菌多样性T-RFLP
Keywords:
tea tree tree age rhizospheric soil bacteria diversity T-RFLP
分类号:
S154.36 : S571.1
DOI:
10.19675/j.cnki.1006-687x.2017.10003
摘要:
以不同树龄铁观音茶树根际土壤为研究对象,采用末端限制性片段长度多样性(T-RFLP)技术分析茶树不同树龄对土壤细菌多样性的影响. 结果显示,茶树根际土壤细菌HaeIII和MspI酶切产物的T-RFs片段数量及辛普森指数、香农威纳指数均随着茶树树龄增加呈现下降趋势. 相关性分析结果表明,与茶树树龄呈显著或极显著正相关的细菌T-RFs片段9个,共34种细菌,由10个纲组成,按照功能可分成病原菌及与改善土壤质地、抑制病原菌、碳素循环、氮素循环、硫素循环等相关的微生物6大类,其中病原菌占比达58.82%. 与茶树树龄呈显著或极显著负相关的细菌T-RFs片段17个,共38种细菌,由12个纲组成,按照功能可分成病原菌及与氮素循环、碳素循环、抑制病原菌、改善土壤质地等相关的细菌共5大类,其中除病原菌外,其余细菌占比达78.95%. 综上所述,随着茶树树龄增加,茶树根际土壤细菌多样性及其功能发生了显著的变化,结果可为后期细菌群落互作效应研究提供一定理论基础. (图4 表3 参81)
Abstract:
The rhizospheric soils of Tieguanyin at different ages were used as the study materials, and terminal-restriction fragment length polymorphism (T-RFLP) was used to analyze the changes in bacterial diversity. The results showed that the number of T-RFs, Simpson index, and Shannon index decreased significantly with the age of the tea tree. Results of correlation analysis showed that 9 T-RFs from the bacterial community were significantly and positively correlated with the age of the tea tree, and included 34 species of microbes belonging to 10 classes. The 34 microbes were divided into 6 types according to their functional attributes, and included pathogenic bacteria, bacteria that improved soil texture or inhibited pathogenic bacteria, and bacteria associated with the carbon, nitrogen, or sulfur cycles, in which the percentage of pathogenic bacteria was 58.82%. Seventeen T-RFs were significantly and negatively correlated with the age of the tea tree, and included 38 species of bacteria belonging to 12 classes. The 38 bacterial species were divided into 5 types according to their functional attributes, and included pathogenic bacteria, bacteria that improved soil quality or inhibited pathogenic bacteria, and bacteria associated with the carbon cycle or nitrogen cycle, in which all the others, barring the pathogenic bacteria, accounted for 78.95% of the bacterial population. In brief, the diversity and function of bacteria in the rhizospheric soil of tea tree changed significantly with the age of the tea tree, which provides a theoretical basis for studying the interactions of bacterial communities.

参考文献/References:

1. Nihorimbere V, Ongena M, Smargiassi M, Thonart P. Bene?cial effect of the rhizosphere microbial community for plant growth and health [J]. Biotechnol Agron Soc, 2011, 15: 327-337
2. Morgan JAW, Bending GD, White PJ. Biological costs and bene?ts to plant–microbe interactions in the rhizosphere [J]. J Exp Bot, 2005, 56 (417): 1729-1739
3. Duffy B, Keel C, Defago G. Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection [J]. Appl Environ Microbiol, 2004, 70 (3): 1836-1842
4. Travis SW, Harsh PB, Erich G, Jorge MV. Root exudation and rhizosphere biology [J]. Plant Physiol, 2003, 132: 44-51
5. Jorge MV, Harsh PB, Frank RS, Giles CT, Ragan MC. Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion [J]. Ecol Lett, 2004, 7: 285-292
6. Petra M, Sari T. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere [J]. Appl Soil Ecol, 2005, 28: 23-36
7. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome [J]. J Biol Chem, 2013, 288 (7): 4502-4512
8. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM. Root exudation of phytochemicals in Arabidopsis follows speci?c patterns that are developmentally programmed and correlate with soil microbial functions [J]. PloS ONE, 2013, 8 (2): e55731
9. Li W, Zheng ZC, Li TX, Zhang XZ, Wang YD, Yu HY, He SQ, Liu T. Effect of tea plantation age on the distribution of soil organic carbon fraction within water-stable aggregates in the hilly region of western Sichuang, China [J]. Catena, 2015, 133: 198-205
10. Cao PR, Liu CY, Li D. Autointoxication of tea (Camellia sinensis) and identification of its autotoxins [J]. Allelopathy J, 2011, 28: 155-165
11. Chen T, Lin S, Wu LK, Lin WX, Sampietro DA. Soil sickness: current status and future perspectives [J]. Allelopathy J, 2015, 36 (2): 167-196
12. Roeland LB, Corné MJP, Peter AHMB. The rhizosphere microbiome and plant health [J]. Trends Plant Sci, 2012, 17 (8): 478-486
13. Li XG, Ding CF, Hua K, Zhang TL, Zhang YN, Zhao L, Yang YR, Liu JG, Wang XX. Soil sickness of peanuts is attributable to take modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy [J]. Soil Biol Biochem, 2014, 78: 149-159
14. Lin S, Huang PJJ, Chen T, Zhang ZY, Lin WX. Evaluation of allelopathic potential and identification of allelochemicals in Pseudostellariae heterophylla rhizosphere soil in different cropping patterns [J]. Allelopathy J, 2014, 33 (2): 151-162
15. Zhao YP, Wu LK, Chu LX, Yang YQ, Li ZF, Azeem S, Zhang ZX, Fang CX, Lin WX. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system [J]. Sci Rep, 2015, 5: 8197
16. 伍丽, 余有本, 周天山, 李冬花, 冯雪, 蒋堃. 茶树根际土壤因子对根际微生物数量的影响[J]. 西北农业学报, 2011, 20 (4): 159-163 [Wu L, Yu YB, Zhou TS, Li DH, Feng X, Jiang K. Effects of soil factors on the distributions of tea rhizosphere microorganisms [J]. Acta Agric Bor-occids Sin, 2011, 20 (4): 159-163]
17. 林生, 庄家强, 陈婷, 张爱加, 周明明, 林文雄. 福建安溪不同年限茶树土壤养分与微生物Biolog功能多样性分析[J]. 中国生态农业学报, 2012, 20 (11): 1471-1477 [Lin S, Zhuang JQ, Chen T, Zhang AJ, Zhou MM, Lin WX. Analysis of nutrient and microbial Biolog function diversity in tea soils with different planting years in Fujian Anxi [J]. Chin J Ecol, 2013, 32 (1): 64-71]
18. 王海斌, 叶江华, 陈晓婷, 贾小丽, 孔祥海. 连作茶树根际土壤酸度对土壤微生物的影响[J]. 应用与环境生物学学报, 2016, 22 (2): 480-485 [Wang HB, Ye JH, Chen XT, Jiao XL, Kong XH. Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping [J]. Chin J Appl Environ Biol, 2016, 22 (2): 480-485]
19. Fujii Y, Akihiro F, Syuntaro H. Rhizosphere soil method: a new bioassay to evaluate allelopathy in the field [C]//Proceedings of the fourth world congress on allelopathy, Charles Sturt University, Wagga Wagga, New South Wales, Australia, 2004: 490-492
20. Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX. Characterization of metaproteomics in crop rhizospheric soil [J]. J Proteome Res, 2011, 10 (3): 932-940
21. Horswell J, Cordiner SJ, Maas EW, Martin TM, Sutherland KB, Speir TW, Nogales B, Osborn AM. Forensic comparison of soils by bacterial community DNA profiling [J]. J Forensic Sci, 2002, 47 (2): 350-353
22. Fotoglidis A, Pagourelias E, Kyriakou P, Vassilikos V. Endocarditis caused by unusual Streptococcus species (Streptococcus pluranimalium) [J]. Hippokratia, 2015, 19 (2): 182-185
23. 李璐瑶, 刘梦佳, 滕明明, 王乐, 张耀相, 刘炳琪. 霍氏肠杆菌生物学特性的研究[J]. 畜牧兽医杂志, 2017, 36 (4): 1-2 [Li LY, Liu MJ, Teng MM, Wang L, Zhang YX, Liu BQ. Study on the biological characteristics of enterobacter hormaechei [J]. J Anim Sci Vet Med, 2017, 36 (4): 1-2]
24. Vincenzo S, Chiara C, Azaira B, Andrea B, Domenico D. Epidemiology, pathogenicity and emerging resistances in Staphylococcus pasteuri: from mammals and lampreys, to man [J]. Recent Patents Anti-Infect Drug Discovery, 2009, 4 (2): 123-129
25. Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JKM, Peters G, Rohde H, Herrmann M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses [J]. Int J Med Microbiol, 2004, 294 (3): 203-212
26. 徐佳. 奶牛乳腺炎葡萄球菌种类、毒力基因及抗性基因与耐药性的调查分析[D]. 扬州: 扬州大学, 2016 [Xu J. Systematic investigation into the species, virulence genes, antibiotic resistance genes and antibiotic resistance of Staphylococci from bovine mastitis milk [D]. Yangzhou: Yangzhou University, 2016]
27. Li JQ, Tan BP, Mai KS, Ai QH, Zhang WB, Xu W, Liufu ZG, Ma HM. Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios [J]. Aquaculture, 2006, 253: 140-147
28. Jansson E, Lindberg L, S?ker E, Aspán A. Diagnosis of bacterial kidney disease by detection of Renibacterium salmoninarum by real-time PCR [J]. J Fish Dis, 2008, 31 (10): 755-763
29. Han YPW. Fusobacterium nucleatum: a commensal-turned pathogen [J]. Curr Opin Microbiol, 2015, 23: 141-147
30. Thanigaivel S, Vijayakumar S, Gopinath S, Mukherjee A, Chandrasekaran N, Thomas J. In vivo and in vitro antimicrobial activity of Azadirachta indica (Lin) against Citrobacter freundii isolated from naturally infected Tilapia (Oreochromis mossambicus) [J]. Aquaculture, 2015, 437: 252-255
31. Reyes F, Singh N, Khurram NA, Lee J, Chow L. Strongyloides hyperinfection syndrome causing fatal meningitis and septicemia by Citrobacter koseri [J]. IDCases, 2017, 10: 102-104
32. Nunney L, Schuenzel EL, Scally M, Bromley RE, Stouthamer R. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry [J]. Appl Environ Microbiol, 2014, 80 (10): 3025-3033
33. Nazareno ES, Kersey CM, Dumenyo CK. Characterization of the incompatible interaction between Erwinia tracheiphila and non-host tobacco (Nicotiana tabacum) [J]. Physiol Mol Plant Pathol, 2016, 96: 85-93
34. Bhullar K, Zarepour M, Yu HB, Yang H, Croxen M, Stahl M, Finlay BB, Turvey SE, Vallance BA. The serine protease autotransporter pic modulates Citrobacter rodentium pathogenesis and its innate recognition by the host [J]. Infect Immun, 2015, 83 (7): 2636-2650
35. Noparat P, Maneerat S, Saimmai A. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil [J]. Appl Biochem Biotechnol, 2014, 172 (8): 3949-3963
36. Arora PK, Srivastava A, Singh VP. Bacterial degradation of nitrophenols and their derivatives [J]. J Hazard Mater, 2014, 266: 42-59
37. Lateef S, Oluwafemi O, Cynthia C, Mathew I, Amund O. Pyrene biodegradation potentials of an actinomycete, microbacterium esteraromaticum isolated from tropical hydrocarbon-contaminated soil [J]. J Microbiol Biotechnol Food Sci, 2017, 6 (4): 995-1000
38. Kurniyati K, Kelly JF, Vinogradov E, Robotham A, Tu YB, Wang JY, Liu J, Logan SM, Li CH. A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola [J]. Mol Microbiol, 2017, 103 (1): 67-85
39. Teotia P, Kumar V, Kumar M, Prasad R, Sharma S. Probiotics in Agroecosystem [M]. Dordrecht: Springer Press, 2017: 451-467
40. Tourova TP, Spiridonova EM, Berg IA, Slobodova NV, Boulygina ES, Sorokin DY. Phylogeny and evolution of the family Ectothiorhodos-piraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences [J]. Int J Syst Evol Microbiol, 2007, 57: 2387-2398
41. Xia F, Zou B, Shen C, Zhu T, Gao XH, Quan ZX. Complete genome sequence of Methylophilus sp. TWE2 isolated from methane oxidation enrichment culture of tap-water [J]. J Biotechnol, 2015, 211: 121-122
42. Pablos TE, Sigala JC, Borgne SL, Lara AR. Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli [J]. J Biotechnol, 2014, 9: 791-799
43. Zamani M, diCenzo GC, Milunovic B, Finan TM. A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234 [J]. Environ Microbiol, 2017, 19 (1): 218-236
44. Kima JN, Henriksena EDC, Cann IKO, Mackiea RI. Nitrogen utilization and etabolism in Ruminococcus albus 8 [J]. Appl Environ Microbiol, 2014, 80 (10): 3095-3102
45. Lennon JT. Diversity and metabolism of marine bacteria cultivated on dissolved DNA [J]. Appl Environ Microbiol, 2007, 73 (9): 2799-2805
46. Wang J, Bao JT, Su JQ, Li XR, Chen GX, Ma XF. Impact of inorganic nitrogen additions on microbes in biological soil crusts [J]. Soil Biol Biochem, 2015, 88: 303-313
47. Hiraishi A, Okamura K. Proposal of Rhodoplanes tepidamans sp. nov. to accommodate the thermotolerant phototrophic bacterium previously referred to as Rhodoplanes (Rhodopseudomonas) cryptolactis [J]. Int J Syst Evol Microbiol, 2017, 67: 1540-1545
48. Mellbye BL, Giguere AT, Bottomley PJ, Sayavedra-Stoto LA. Quorum quenching of Nitrobacter winogradskyi suggests that quorum sensing regulates fluxes of nitrogen oxide(s) during nitrification [J]. mBio, 2016, 7 (5): e01753
49. Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110 [J]. Plant Growth Regul, 2015, 76 (3): 327-332
50. Depraect OG, Barajas CG, Roblero JJ, Ordaz A. Characterization of a marine microbial community used for enhanced sulfate reduction and copper precipitation in a two-step process [J]. Appl Biochem Biotechnol, 2017, 182 (2): 452-467
51. Ali SS, Abomohra AE, Sun JZ. Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation [J]. Bioresour Technol, 2017, 238: 425-432
52. Cheng GJ, Karunakaran R, East AK, Poole PS. Multiplicity of sulfate and molybdate transporters and their role in nitrogen fixation in Rhizobium leguminosarum bv. viciae Rlv3841 [J]. Mol Plant-Microbe In, 2016, 29 (2): 143-152
53. Bark SW, Kim KBWR, Kim MJ, Kang BK, PakWM, Kim BR, Park HM, Lim SM, Ahn DH. Optimization and characterization of conditions for cellulose-degrading crude enzymes produced by Cellulophaga lytica PKA 1005. World J Microb Biotechol, 2014, 42 (1): 18-24
54. Rawat S, Johri BN. Role of Thermophilic Microflora in Composting [M]. Dordrecht: Spring Press, 2013: 137-169
55. Xie GJ, Liu BF, Ding J, Wang QL, Ma C, Zhou X, Ren NQ. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production [J]. Environ Sci Pollut Res, 2016, 23 (24): 25312-25322
56. Khasnobis S, Vincent EE, Chatterjee D. Emerfing therapeutic targets in tuberculosis: post-genomic era [J]. Expert Opin Ther Tar, 2002, 6 (1): 21-40
57. Nguyen NL, Yu WJ, Yang HY, Kim JG, Jung MY, Park SJ, Roh SW, Rhee SK. A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase [J]. J Microbiol, 2017, 55 (10): 775-782
58. Kurata A, Matsumoto M, Kobayashi T, Deguchi S, Kishimoto N. Hyaluronate lyase of a deep-sea Bacillus niacini [J]. Mar Biotechnol, 2015, 17 (3): 277-284
59. North JA, Sriram J, Chourey K, Ecker CD, Sharma R, Wildenthal JA, Hettich RL, Tabita FR. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum [J]. mBio, 2016, 7 (4): e00855
60. Lin S, Huangpu JJ, Chen T, Wu LK, Zhang ZY, Lin WX. Analysis of soil microbial community structure and enzyme activities associated with negative effects of Pseudostellaria heterophylla consecutive monoculture on yield [J]. Pak J Bot, 2015, 47 (2): 761-769
61. Hervé V, Junier T, Bindschedler S, Verrecchia E, Junier P. Diversity and ecology of oxalotrophic bacteria [J]. World J Microb Biotechnol, 2016, 32: 28-35
62. Prosekov A, Milentyeva I, Sukhikh S, Dyshlyuk L, Babich O. Identification of probiotic strains isolated from human gastrointestinal tract and investigation of their antagonistic, antioxidant and antiproliferative properties [J]. Biol Med, 2015, 7 (5): 1-5
63. Xiu YJ, Wu T, Meng XH, Meng QG, Wang W. Identification and isolation of a spiroplasma pathogen from diseased oriental river prawn, Macrobrachium nipponense, in China: a new freshwater crustacean host [J]. Aquaculture, 2015, 437: 270-274
64. Anhê EF, Varin TV, Barz ML, Desjardins Y, Levy E, Roy D, Marette A. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts [J]. Curr Obes Rep, 2015, 4 (4): 389-400
65. Yang P, Hung GC, Lei HY, Li TW, Li BJ, Tsai SE, Lo SC. Genome sequencing and annotation of Afipia septicemium strain OHSU_II [J]. Genomics Data, 2014, 2: 123-126
66. Han YPW. Fusobacterium nucleatum: a commensal-turned pathogen [J]. Curr Opin Microbiol, 2015, 23: 141-147
67. Messmer VD, Bioemberg GV, Ritter C, Voit A, Homke R, Keller PM, Bottger EC. Diagnostic molecular mycobacteriology in regions with low tuberculosis endemicity: combining real-time pcr assays for detection of multiple mycobacterial pathogens with line probe assays for identification of resistance mutations [J]. EBio Med, 2016, 9: 228-237
68. Raffel SJ, Battisti JM, Fischer RJ, Schwan TG. Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks [J]. PLoS Pathog, 2014, 10 (4): e1004056
69. 鲁红学, 周燚. 类芽孢杆菌在植物病害防治和环境治理中的应用研究进展[J]. 安徽农业科学, 2008, 36 (30): 13244-13247 [Lu XH, Zhou Y. Research advance in application of Paenibacillus in plant disease control and environment control [J]. J Anhui Agric Sci, 2008, 36 (30): 13244-13247]
70. Lusby PE, Coombes AL, Wilkinson JM. Bactericidal activity of different honeys against pathogenic bacteria [J]. Arch Med Res, 2005, 36 (5): 464-467
71. Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects [J]. Appl Environ Microbiol, 2005, 71 (9): 4951-4959
72. Floate KD, Poku GKK, Coghlin PC. Overview and relevance of Wolbachia bacteria in biocontrol research [J]. Biocontrol Sci Technol, 2006, 16 (8): 767-788
73. 刘志丹, 周良, 杜竹玮, 李浩然. 异化金属还原菌的研究进展[J]. 微生物学通报, 2005, 32 (5): 156-159 [Liu ZD, Zhou L, Du ZW, Li HR. Research progress on dissimilatory metal reduction microorganisms [J]. Microbiol China, 2005, 32 (5): 156-159]
74. Orsi WD, J?rgensen BB, Biddle JF. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor [J]. Environ Microbiol Rep, 2016, 8 (4): 452-460
75. Hemmann JL, Saurel O, Ochsner AM, Stodden BK, Kiefer P, Milon A, Vorholt JA. The one-carbon carrier methylofuran from Methylobacterium extorquens AM1 contains a large number of α- and γ-linked glutamic acid residues [J]. J Biol Chem, 2016, 291: 9042-9051
76. Marschner P. Plant-microbe interactions in the rhizosphere and nutrient cycling [C//Marschner P, Rengel Z. Nutrient Cycling in Terrestrial Ecosystems. Heidelberg: Springer-Verlag, 2007: 159-182
77. 杨宇虹, 陈冬梅, 晋艳, 王海斌, 段玉琪, 郭徐魁, 何海斌, 林文雄. 不同肥料种类对连作烟草根际土壤微生物功能多样性的影响[J]. 作物学报, 2011, 37 (1): 105-111 [Yang YH, Chen DM, Jin Y, Wang HB, Duan YQ, Guo XK, He HB, Lin WX. Effects of different fertilizers on functional diversities of microbial flora rhizospheric soil of monoculture tobacco [J]. Acta Agron Sin, 2011, 37 (1): 105-111]
78. 吴林坤, 黄伟民, 王娟英, 吴红淼, 陈军, 秦贤金, 张重义, 林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41 (2): 308-317 [Wu LK, Huang WM, Wang JY, Wu HM, Chen J, Qin XJ, Zhang ZY, Lin WX. Diversity analysis of rhizosphere microflora of wild R. glutinosa grown in monocropping for different years [J]. Acta Agron Sin, 2015, 41 (2): 308-317]
79. 郝慧荣, 李振方, 熊君, 陈慧, 张重义, 林文雄. 连作怀牛膝根际土壤微生物区系及酶活性的变化研究[J]. 中国生态农业学报, 2008, 16 (2): 307-311 [Hao HR, Li ZF, Xiong J, Chen H, Zhang ZY, Lin WX. Variation of microbial flora and enzyme activity in rhizospheric soil under continuous cropping of Achyranthes bidentata [J]. Chin J Eco-Agric, 2008, 16 (2): 307-311]
80. Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA. Bacterial diversity promotes community stability and functional resilience after perturbation [J]. Environ Microbiol, 2005, 7 (3): 301-313
81. Latz E, Eisenhauer N, Rall1 BC, Roscher EAC, Scheu S, Jousset A. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities [J]. J Ecol, 2012, 100 (3): 597-604
82.

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[4]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[5]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[6]王海斌,**陈晓婷丁 力叶江华贾小丽孔祥海何海斌.福建省安溪县茶园土壤酸化对茶树产量及品质的影响*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,**,CHEN Xiaoting,et al.Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian province *[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[7]张 玥 胡雲飞 王树茂 柯子星 高水练 林金科**.茶园年限对根际土壤真菌群落结构及多样性的影响*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.04011]
 ZHANG Yue,HU Yunfei,WANG Shumao,et al.Effect of the structure and diversity of fungal community in rhizosphere soil from different ages of tea garden *[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2018.04011]

更新日期/Last Update: 2018-08-25