|本期目录/Table of Contents|

[1]黄保国,顾 越,陈国炜,等.给水管网流速对水质和生物膜种群结构的影响[J].应用与环境生物学报,2018,24(04):860-865.[doi:10.19675/j.cnki.1006-687x.2017.10011]
 HUANG Baoguo,GU Yue,CHEN Guowei,et al.Effects of water velocity on bulk water quality and biofilm population structure in drinking water distribution systems[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):860-865.[doi:10.19675/j.cnki.1006-687x.2017.10011]
点击复制

给水管网流速对水质和生物膜种群结构的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
860-865
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Effects of water velocity on bulk water quality and biofilm population structure in drinking water distribution systems
作者:
黄保国顾 越陈国炜金菊良刘丽
合肥工业大学土木与水利工程学院 合肥 230009
Author(s):
HUANG Baoguo GU Yue CHEN Guowei JIN Juliang & LIU Li**
Schoo of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
关键词:
流速主体水水质生物膜细菌多样性指数
Keywords:
flow velocity bulk water quality biofilm bacteria diversity index
分类号:
X172
DOI:
10.19675/j.cnki.1006-687x.2017.10011
摘要:
为了解析水流流速对给水管网的影响,采用给水管网模拟系统,动态监测28 d内的水质,对第28日的生物膜进行生物量测定和16S rDNA测序;并利用统计分析方法解析主体水水质和生物膜之间的相互关系. 结果显示:在流速为0.5 m/s时,主体水中总有机碳(TOC)最为丰富(5.26 ± 0.17 mg/L),悬浮细菌总数(n)最多[lg (n+1/mL-1) = 4.79 ± 0.02],综合水质为最差(3.69),而且生物膜细菌总数(n)最大[lg (n+1/cm-2) = 5.48 ± 0.06];Pearson相关分析显示,不同流速下生物膜细菌总数与主体水水质指标中的电导率(R = 0.73,P < 0.01)、浊度(R = 0.87,P < 0.001)、TOC(R = 0.94,P < 0.001)和细菌总数(R = 0.92,P < 0.001)成正相关,与余氯(R = -0.68,P < 0.05)成负相关;在低流速(0.1 m/s)和高流速(2.5 m/s)条件下生物膜多样性较高,而在0.5 m/s流速下,生物膜细菌种群多样性处于最低水平;变形菌门(Proteobacteria)在生物膜的群落结构中占主导地位. 本研究表明给水管网流速影响水质和生物膜种群结构,水质与生物膜种群结构存在相互关系,结果可为管网生物膜的研究提供理论依据. (图4 表4 参43)
Abstract:
To study the effect of flow velocity on drinking water distribution systems, bulk water quality was monitored over 28 days, biomass was measured, and 16S rDNA was sequenced on the 28th day using a water distribution simulation system. The relationship between bulk water quality and biofilm was statistically analyzed. Flow velocity of 0.5 m/s yielded the most total organic carbon (TOC) (5.26 ± 0.17 mg/L) in the bulk water, the most bulk water bacteria (lg (n+1/mL-1) = 4.79 ± 0.02), the worst bulk water quality, and the most biofilm bacteria (lg (n+1/cm-2) = 5.48 ± 0.06). A Pearson correlation analysis showed the total number of biofilm bacteria was positively correlated with conductivity (R = 0.73, P < 0.01), turbidity (R = 0.87, P < 0.001), TOC (R = 0.94, P < 0.001), and total bacteria (R = 0.92, P < 0.001), and was negatively correlated with residual chlorine (R = -0.68, P < 0.05). Biofilm diversity was high under the low (0.1 m/s) and high (2.5 m/s) flow rates, but the bacterial diversity of biofilm was the lowest at the 0.5 m/s flow rate, in which Proteobacteria dominated the biofilm community structure. These results suggest that flow velocity affects bulk water quality and biofilm population structure, and water quality and biofilm population structure are interrelated, which provides the theoretical basis for research on biofilms in drinking water distribution systems.

参考文献/References:

1 Codony F, Morato J, Mas J. Role of discontinuous chlorination on microbial production by drinking water biofilms [J]. Water Res, 2005, 39 (9): 1896-1906
2 Batté M, Appenzeller BMR, Grandjean D, Fass S, Gauthier V, Jorand F, Mathieu L, Boualam M, Saby S, Block JC. Biofilms in drinking water distribution systems [J]. Rev Environ Sci Bio/Technol, 2003, 2 (2-4): 147-168
3 Helmi K, Skraber S, Gantzer C, Willame R, Hoffmann L, Cauchie HM. Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm [J]. Appl Environ Microbiol, 2008, 74 (7): 2079-2088
4 Zhou X, Zhang K, Zhang T, Li C, Mao X. An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system (DWDS) [J]. Appl Microbiol Biotechnol, 2017, 101 (9): 3537-3550
5 Vreeburg JHG, Boxall JB. Discolouration in potable water distribution systems: a review [J]. Water Res, 2007, 41 (3): 519-529
6 Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems [J]. Environ Sci Technol, 2016, 50 (17): 8954-8976
7 Volker S, Schreiber C, Kistemann T. Drinking water quality in household supply infrastructure - A survey of the current situation in Germany [J]. Int J Hyg Environ Health, 2010, 213 (3): 204-209
8 Mao G, Wang Y, Hammes F. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water [J]. Sci Total Environ, 2018, 613-614: 1220-1227
9 Zhang C, Li C, Zheng X, Zhao J, He G, Zhang T. Effect of pipe materials on chlorine decay, trihalomethanes formation, and bacterial communities in pilot-scale water distribution systems [J]. Int J Environ Sci Technol, 2016, 14 (1): 85-94
10 Ren H, Wang W, Liu Y, Liu S, Lou L, Cheng D, He X, Zhou X, Qiu S, Fu L, Liu J, Hu B. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China [J]. Appl Microbiol Biotechnol, 2015, 99 (24): 10713-10724
11 Liu J, Luo Z, Liu K, Zhang Y, Peng H, Hu B, Ren H, Zhou X, Qiu S, He X, Ye P, Bastani H, Lou L. Effect of flushing on the detachment of biofilms attached to the walls of metal pipes in water distribution systems [J]. J Zhejiang Univ-Sci A, 2017, 18 (4): 313-328
12 Ginige MP, Garbin S, Wylie J, Krishna KC. Effectiveness of devices to monitor biofouling and metals deposition on plumbing materials exposed to a full-scale drinking water distribution system [J]. PLoS ONE, 2017, 12 (1): e0169140
13 Lin H, Zhu X, Wang Y, Yu X. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems [J]. J Water Health, 2017, 15 (2): 218-227
14 Shen Y, Huang C, Monroy GL, Janjaroen D, Derlon N, Lin J, Espinosa-Marzal R, Morgenroth E, Boppart SA, Ashbolt NJ, Liu WT, Nguyen TH. Response of simulated drinking water biofilm mechanical and structural properties to long-term disinfectant exposure [J]. Environ Sci Technol, 2016, 50 (4): 1779-1787
15 Liu J, Ren H, Ye X, Wang W, Liu Y, Lou L, Cheng D, He X, Zhou X, Qiu S, Fu L, Hu B. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China [J]. Appl Microbiol Biotechnol, 2017, 101 (2): 749-759
16 Wang H, Masters S, Hong Y, Stallings J, Falkinham JO, 3rd, Edwards MA, Pruden A. Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella mycobacteria, Pseudomonas aeruginosa, and two amoebas [J]. Environ Sci Technol, 2012, 46 (21): 11566-11574
17 Lautenschlager K, Hwang C, Liu WT, Boon N, Koster O, Vrouwenvelder H, Egli T, Hammes F. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks [J]. Water Res, 2013, 47 (9): 3015-3025
18 Zlatanovi? L, van der Hoek JP, Vreeburg JHG. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system [J]. Water Res, 2017, 123: 761-772
19 Fish K, Osborn AM, Boxall JB. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration [J]. Sci Total Environ, 2017, 593-594: 571-580
20 Douterelo I, Sharpe R, Boxall J. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration [J]. J Appl Microbiol, 2014, 117 (1): 286-301
21 Husband PS, Boxall JB, Saul AJ. Laboratory studies investigating the processes leading to discolouration in water distribution networks [J]. Water Res, 2008, 42 (16): 4309-4318
22 Yuan Y, Zhong D, Ma W. Bulk-water experimental research on the effects influencing the formation of trihalomethanes [J]. Int Conference Pipelines Trenchless Technol, 2009 (361): 2100-2109
23 Lehtola MJ, Laxander M, Miettinen IT, Hirvonen A, Vartiainen T, Martikainen PJ. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes [J]. Water Res, 2006, 40 (11): 2151-2160
24 Lautenschlager K, Hwang C, Ling F, Liu WT, Boon N, Koster O, Egli T, Hammes F. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant [J]. Water Res, 2014, 62: 40-52
25 Prest EI, El-Chakhtoura J, Hammes F, Saikaly PE, van Loosdrecht MC, Vrouwenvelder JS. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization [J]. Water Res, 2014, 63: 179-189
26 van der Kooij D, Veenendaal HR, Scheffer WJ. Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene [J]. Water Res, 2005, 39 (13): 27892798
27 Gomes IB, Simoes M, Simoes LC. An overview on the reactors to study drinking water biofilms [J]. Water Res, 2014, 62: 63-87
28 Gagnon GA, Slawson RM. An efficient biofilm removal method for bacterial cells exposed to drinking water [J]. J Microbiol Methods, 1999 (34): 203-214
29 Vollertsen J, Jahn A, Nielsen JL, Jacobsen TH, Nielsen PH. Comparison of methods for determination of microbial biomass in wastewater [J]. Water Res, 2001, 35 (7): 1649-1658
30 Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy [J]. Appl Environ Microbiol, 1977, 33 (5): 1225-1228
31 Deines P, Sekar R, Husband PS, Boxall JB, Osborn AM, Biggs CA. A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems [J]. Appl Microbiol Biotechnol, 2010, 87 (2): 749-756
32 Lehtola MJ, Miettinen IT, Keinanen MM, Kekki TK, Laine O, Hirvonen A, Vartiainen T, Martikainen PJ. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes [J]. Water Res, 2004, 38 (17): 3769-79
33 Lin W, Yu Z, Zhang H, Thompson IP. Diversity and dynamics of microbial communities at each step of treatment plant for potable water generation [J]. Water Res, 2014, 52: 218-230
34 薛毅. 统计建模与R软件[M]. 北京: 清华大学出版社, 2007 [Xue Y. Statistical Modeling and R Software [M]. Beijing: Tsinghua University Press, 2007]
35 王颖, 方航. 模糊识别法在水库水质评价中的应用[J]. 人民黄河, 2010, 32 (7): 40-41 [Wang Y, Fang H. Application of fuzzy recognition method in reservoir water quality evaluation [J]. People’s Yellow River, 2010, 32 (7): 40-41]
36 Paris T, Skali-Lami S, Block JC. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers [J]. Biotechnol Bioeng, 2007, 97 (6): 1550-1561
37 Jang H, Choi Y, Ka J. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor [J]. J Microbiol Biotechnol, 2011, 21 (2): 115-23
38 李伟英, 许晨, 王峰, 白涛. 给水管网生物膜变形细菌变化及其影响[J]. 哈尔滨工业大学学报, 2016, 48 (2): 82-7 [Li WY, Xu C, Wang F, Bai T. Change and influence of biofilm proteobacteria in water distribution system [J]. J Harbin Inst Technol, 2016, 48 (2): 82-87]
39 Lemus Perez MF, Rodriguez Susa M. Exopolymeric substances from drinking water biofilms: dynamics of production and relation with disinfection by products [J]. Water Res, 2017, 116: 304-315
40 刘婷婷, 陈南, 孔维文, 王敬琦, 何晓青. 基于流式细胞术研究管网水中细菌的稳定性[J]. 应用与环境生物学报, 2016, 22 (1): 146-50 [Liu TT, Chen N, Kong WW, Wang JQ, He XQ. Monitoring the bacterial stability in drinking water distribution systems by flow cytometry [J]. Chin J Appl Environ Biol, 2016, 22 (1): 146-150]
41 Puzon GJ, Wylie JT, Walsh T, Braun K, Morgan MJ. Comparison of biofilm ecology supporting growth of individual Naegleria species in a drinking water distribution system [J]. FEMS Microbiol Ecol, 2017, 93 (4): 1-8
42 Lee YM, Cho KH, Hwang K, Kim EH, Kim M, Hong SG, Lee HK. Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment [J]. Korean J Microbiol, 2016, 52 (1): 49-58
43 Sun H, Shi B, Bai Y, Wang D. Bacterial community of biofilms developed under different water supply conditions in a distribution system [J]. Sci Total Environ, 2014, 472: 99-107

更新日期/Last Update: 2018-08-25