|本期目录/Table of Contents|

[1]葛露露,孟庆权,林宇,等.滨海沙地不同树种人工林的碳储量及其分配格局[J].应用与环境生物学报,2018,24(04):723-728.[doi:10.19675/j.cnki.1006-687x.2017.10016]
 GE Lulu,MENG Qingquan,LIN Yu,et al.Carbon storage and its allocation to different plantations in a coastal sandy area[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):723-728.[doi:10.19675/j.cnki.1006-687x.2017.10016]
点击复制

滨海沙地不同树种人工林的碳储量及其分配格局()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
723-728
栏目:
研究简报
出版日期:
2018-08-20

文章信息/Info

Title:
Carbon storage and its allocation to different plantations in a coastal sandy area
作者:
葛露露孟庆权林宇何宗明邱岭军胡欢甜
1福建农林大学林学院 福州 350002 2福建省长乐大鹤国有防护林场 长乐 350212
Author(s):
GE Lulu1 MENG Qingquan1 LIN Yu2 HE Zongming1** QIU Lingjun1 & HU Huantian1
1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Changle Dahe State-owned Protection Forest Farm of Fujian Province, Changle 350212, China
关键词:
生物量碳含量碳储量分配格局滨海沙地人工林
Keywords:
biomass carbon content carbon storage allocation pattern coastal sandy area plantation
分类号:
S718.554.2
DOI:
10.19675/j.cnki.1006-687x.2017.10016
摘要:
为促进沿海合理营林和碳库平衡,基于对福州市滨海后沿沙地上营造的人工林的调查,研究尾巨桉、木麻黄、纹荚相思3种人工林生态系统的碳含量、碳储量及分配格局. 结果表明,尾巨桉、木麻黄、纹荚相思不同器官平均碳含量分别为456.08-482.68、431.89-464.90、472.93-505.10 g/kg. 相同树种不同器官之间和相同器官不同树种之间的碳含量均存在显著差异(P < 0.05). 不同林分间乔木层的碳储量表现为木麻黄(32.89 t/hm2)>纹荚相思(31.33 t/hm2)>尾巨桉(30.20 t/hm2),其中,乔木层各器官碳储量均以树干(10.92 t/hm2、10.36 t/hm2、15.00 t/hm2)最大,分别占各自乔木层碳储量的33.20%、33.06%、49.67%;地被层(包括林下植被层和凋落物层)的碳储量表现为尾巨桉(6.42 t/hm2)>纹荚相思(6.19 t/hm2)>木麻黄(4.57 t/hm2),其中凋落物层碳储量均远远大于草本层碳储量;土壤层的碳储量表现为木麻黄(8.02 t/hm2)>纹荚相思(7.31 t/hm2)>尾巨桉(6.42 t/hm2). 这3种人工林生态系统总碳储量表现为木麻黄(45.48 t/hm2)>纹荚相思(44.83 t/hm2)>尾巨桉(43.04 t/hm2),且碳储量分布格局均为乔木层>土壤层>凋落物层>草本层. 因此,滨海沙地这3种人工林生态系统固碳效益无显著差异,纹荚相思、尾巨桉和木麻黄都是很好的固碳树种. (表8 参32)
Abstract:
Based on the survey on the plantations in the southeast coastal area of Fuzhou, we investigated the carbon content, storage, and allocation in plantation ecosystems growing Eucalyptus urophylla × E. grandis (EUC), Casuarina equisetifolia (CAS), and Acacia aulacocarpa (ACA). The results showed that the average carbon content in the different organs of EUC, CAS, and ACA ranged from 456.08 to 482.68 g/kg, 431.89 to 464.90 g/kg, and 472.93 to 505.10 g/kg, respectively. There were significant differences in the carbon content among the different organs of the same species and among the same organ of different species (P < 0.05). The carbon storages in the tree layer were ranked as: CAS (32.89 t/hm2) > ACA (31.33 t/hm2) > EUC (30.20 t/hm2). The highest amount of carbon storage was observed in the stem, being 10.92 t/hm2, 10.36 t/hm2, and 15.00 t/hm2 for CAS, ACA, and EUC, respectively, which accounted for 33.20%, 33.06%, and 49.67%, respectively of the carbon storage in the tree layer. The carbon storages in the ground cover (including the understory vegetation layer and litter layer) were in the order: EUC (6.42 t/hm2) > ACA (6.19 t/hm2) > CAS (4.57 t/hm2), and the carbon storage of the litter layer was much higher than that of the herb layer. The carbon storages in the soil layer were in the order: CAS (8.02 t/hm2) > ACA (7.31 t/hm2) > EUC (6.42 t/hm2). The carbon storages in the ecosystem were in the order: CAS (45.48 t/hm2) > ACA (44.83 t/hm2) > EUC (43.04 t/hm2). For all the tree species, the tree layer stored the greatest amount of carbon, followed by the soil layer and litter layer, while the carbon storage in the herb layer was the lowest. Therefore, there were no significant differences in the carbon sequestration benefits of the 3 plantations in the southeast coastal area of Fuzhou, and the carbon fixation by ACA and EUC were comparable to that of CAS.

参考文献/References:

1 Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB. The biota and the world carbon budget [J]. Science, 1978, 199 (4325): 141-146
2 Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. Soil carbon pools and world life zone [J]. Nature, 1982, 298 (5870): 156-159
3 Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests [J]. Science, 2011, 333 (6045): 988-993
4 Ceulemans R, Janssens IA, Jach ME. Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies [J]. Ann Bot, 1999, 84 (5): 577-590
5 明安刚, 贾宏炎, 田祖为, 陶怡, 卢立华, 蔡道雄, 史作民, 王卫霞. 不同林龄格木人工林碳储量及其分配特征[J]. 应用生态学报, 2014, 25 (4): 940-946 [Ming AG, Jia HY, Tian ZW, Tao Y, Lu LH, Cai DX, Shi ZM, Wang WX. Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages [J]. Chin J Appl Ecol, 2014, 25 (4): 940-946]
6 黄雪蔓, 尤业明, 蓝嘉川, 刘世荣, 贾宏炎, 朱宏光, 温远光. 不同间伐强度对杉木人工林碳储量及其分配的影响[J]. 生态学报, 2016, 36 (1): 156-163 [Huang XM, You YM, Lan JC, Liu SR, Jia HY, Zhu HG, Wen YG. The effect of carbon storage and its allocation in Cunninghamia lanceolata plantations with different thinning intensities [J]. Acta Ecol Sin, 2016, 36 (1): 156-163]
7 Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in north-west Patagonia [J]. For Ecol Manage, 2003, 180 (1-3): 317-333
8 Specht A, West PW. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia [J]. Biomass Bioenergy, 2003, 25 (4): 363-379
9 He YJ, Qin L, Li ZY, Liang X, Shao M, Tan L. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China [J]. For Ecol Manage, 2013, 295 (5): 193-198
10 胡建利, 杨万勤, 张健, 邓仁菊. 川西亚高山冷杉和白桦细根生物量与碳储量特征[J]. 应用与环境生物学报, 2009, 15 (3): 313-317 [Hu JL, Yang WQ, Zhang J, Deng RJ. Characteristics of biomass and carbon stock of fir and birch fine roots in subalpine forest of western Sichuan, China [J]. Chin J Appl Environ Biol, 2009, 15 (3): 313-317]
11 赖家明, 黄从德, 胡庭兴, 杨武年. 基于遥感信息的道孚县亚高山森林植被地上碳储量估算及其空间分布特征[J]. 应用与环境生物学报, 2013, 19 (4): 593-597 [Lai JM, Huang CD, Hu TX, Yang WN. Aboveground carbon storage and its spatial distribution in the subalpine forest of Daofu County based on remote sensing model [J]. Chin J Appl Environ Biol, 2013, 19 (4): 593-597]
12 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31 (19): 5437-5448 [Liu SR, Wang H, Luan JW. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China [J]. Acta Ecol Sin, 2011, 31 (19): 5437-5448]
13 魏亚伟, 周旺明, 周莉,于大炮, 周永斌, 秦胜金, 代力民. 兴安落叶松天然林碳储量及其碳库分配特征[J]. 生态学报, 2015, 35 (1): 189-195 [Wei YW, Zhou WM, Zhou L, Yu DP, Zhou YB, Qin SJ, Dai LM. Carbon storage and its distribution pattern in the natural Larix gmelinii forests on Daxing’an mountains [J]. Acta Ecol Sin, 2015, 35 (1): 189-195]
14 明安刚, 刘世荣, 莫慧华, 蔡道雄, 农友, 曾冀, 李华, 陶怡. 南亚热带红锥、杉木纯林与混交林碳贮量比较[J]. 生态学报, 2016, 36 (1): 244-251 [Ming AG, Liu SR, Mo HH, Cai DX, Nong Y, Zeng J, Li H, Tao Y. Comparison of carbon storage in pure and mixed stands of Castanopsis hystrix and Cunninghamia lanceolata in subtropical China [J]. Acta Ecol Sin, 2016, 36 (1): 244-251]
15 明安刚, 刘世荣, 农友, 蔡道雄, 贾宏炎, 黄德卫, 王群能, 农志. 热南亚带3种阔叶树种人工幼龄纯林及其混交林碳贮量比较[J]. 生态学报, 2015, 35 (1): 180-188 [Ming AG, Liu SR, Nong Y, Cai DX, Jia HY, Hua DW, Wang QN, Nong Z. Comparison of carbon storage in juvenile monoculture and mixed plantation stands of three common broadleaved tree species in subtropical China [J]. Acta Ecol Sin, 2015, 35 (1): 180-188]
16 Fitter A. Making allelopathy respectable[J]. Science, 2003, 301 (5638):1337-1338
17 Levine JS, Cofer IWR, Cahoon JDR, Winstead EL. Biomass burning: a driver for global change [J]. Environ Sci Technol, 1995, 29 (3): 120-185
18 Catharinaje S, Gertjan N, Peterh V, Reinw DW. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories [J]. For Ecol Manage, 2008, 256 (3): 482-490
19 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24 (5): 518-522 [Zhou YR, Yu ZL, Zhao SD. Carbon storage and budget of major Chinese forest types [J]. J Plant Ecol, 2000, 24 (5): 518-522]
20 兰斯安, 杜虎, 曾馥平, 宋同清, 彭晚霞, 韩畅, 陈莉, 苏樑. 不同林龄杉木人工林碳储量及其分配格局[J]. 应用生态学报, 2016, 27 (4): 1125-1134 [Lan SA, Du H, Zeng FP, Song TQ, Peng WX, Han C, Chen L, Su L. Carbon storage and allocation in Cunninghamia lanceolata plantations with different standages [J]. Chin J Appl Ecol, 2016, 27 (4): 1125-1134]
21 Wang SQ, Zhou CH, Luo CW. Studying carbon storage spatial distribution of terrestrial natural vegetation in China [J]. Progr Geogr, 1999, 18 (3): 238-244
22 林宝平, 何宗明, 郜士垒, 桑昌鹏, 温秀萍, 林宇, 黄志群, 林思祖. 去除根系和凋落物对滨海沙地3种防护林土壤碳氮库的短期影响[J]. 生态学报, 2017, 37 (12): 4061-4071 [Lin BP, He ZM, Gao SL, Sang CP, Wen XP, Lin Y, Huang ZQ, Lin SZ. Short-term effects of root exclusion and litter removal on sandy soil carbon and nitrogen pools in three coastal plantation forests [J]. Acta Ecol Sin, 2017, 37 (12): 4061-4071]
23 吴鹏飞, 朱波, 刘世荣, 王小国. 不同林龄桤-柏混交林生态系统的碳储量及其分配[J]. 应用生态学报, 2008, 19 (7): 1419-1424 [Wu PF, Zhu B, Liu SR, Wang XG. Carbon storage and its allocation in mixed alder-cypress plantations at different age stages [J]. Chin J Appl Ecol, 2008, 19 (7): 1419-1424]
24 陶玉华, 冯金朝, 马麟英, 隆卫革, 曹书阁. 广西罗城马尾松、杉木、桉树人工林碳储量及其动态变化[J]. 生态环境学报, 2011, 20 (11): 1608-1613 [Tao YH, Feng JC, Ma LY, Long WG, Cao SG. Carbon storage and distribution of massion pine, Chinese fir and eucalyptus plantations at Liuzhou, Guangxi province [J]. Ecol Environ Sci, 2011, 20 (11): 1608-1613]
25 Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. How strongly can forest management influence soil carbon sequestration? [J]. Geoderma, 2007, 137 (3): 253-268
26 Zeng ZQ, Wang SL, Zhang CM, Gong C, Qing H. Carbon storage in evergreen broad-leaf forests in mid-subtropical region of China at four succession stages [J]. J For Res, 2013, 24 (4): 677-682
27 Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS. Carbon storage in a chronosequence of Chinese fir plantations in southern China [J]. For Ecol Manage, 2013, 300 (4): 68-76
28 Cao J, Wang X, Tian Y, Wen Z, Zha T. Pattern of carbon allocation across three different stages of stand development of a Chinese pine ( Pinus tabulaeformis ) forest [J]. Ecol Res, 2012, 27 (5): 883-892
29 Paul KI, Po lglase PJ, Nyakuengama JG, Khanna PK. Change in soil carbon following afforestation [J]. For Ecol Manage, 2002, 168 (1): 241-257
30 Pan YD, Luo TX, Birdsy R, Hom J, Melillo J. New estimates of carbon storage and sequestration in China’s forests-effects of age-class and method on inventory-based carbon estimation [J]. Clim Change, 2004, 67 (2-3): 211-236
31 Fang JY, Chen AP, Peng CH, Zhao SP, Ci LJ. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science, 2001, 292 (5525): 2320-2322
32 刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20 (5): 733-740 [Liu GH, Fu BJ, Fang JY. Carbon dynamics of Chinese forests and its contribution to global carbon balance [J]. Acta Ecol Sin, 2000, 20 (5): 733-740]

相似文献/References:

[1]任海,彭少麟,余作岳,等.鹤山针叶混交林的光能利用效率[J].应用与环境生物学报,1996,2(01):15.
 Ran Hai,Peng Shaolin,Yu Zuoyue,et al.EFFICIENCY OF SOLAR RADIATION UTILIZATION BY CONIFEROUS MIXED FOREST IN HESHAN[J].Chinese Journal of Applied & Environmental Biology,1996,2(04):15.
[2]唐景春,KATAYAMA,Arata.醌类图谱分析在环境微生物生态测定中的应用[J].应用与环境生物学报,2004,10(04):530.
 TANG Jingchun,et al..Application of quinone profile analysis for the characterization of microbial ecology in environment[J].Chinese Journal of Applied & Environmental Biology,2004,10(04):530.
[3]田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J].应用与环境生物学报,2008,14(01):132.
 TIAN Yaohua,et al..Application of Microbial Research in Evaluation of Soil Quality[J].Chinese Journal of Applied & Environmental Biology,2008,14(04):132.
[4]邓宇,华兆哲,** 赵志军,等.氮源对枯草芽孢杆菌WSHDZ-01合成过氧化氢酶的影响[J].应用与环境生物学报,2008,14(04):544.
[5]包维楷,雷波.青藏高原东部原始云杉林及其系列采伐迹地3个林地藓类种群结构与生物量的差异性评估[英][J].应用与环境生物学报,2009,15(01):8.[doi:10.3724/SP.J.1145.2009.00008]
 BAO Weikai,LEI Bo.Evaluating the Changes in Structure and Biomass of Three Common Forest-floor Mosses in Cutovers and Primary Spruce Forest in the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):8.[doi:10.3724/SP.J.1145.2009.00008]
[6]胡建利,杨万勤,张健,等.川西亚高山冷杉和白桦细根生物量与碳储量特征[J].应用与环境生物学报,2009,15(03):313.[doi:10.3724/SP.J.1145.2009.00313]
 HU Jianli,YANG Wanqin,ZHANG Jian,et al.Characteristics of Biomass and Carbon Stock of Fir and Birch Fine Roots in Subalpine Forest of Western Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):313.[doi:10.3724/SP.J.1145.2009.00313]
[7]程煜,洪伟,吴承祯,等.木荷地上部分生物量分布特征与生产力[J].应用与环境生物学报,2009,15(03):318.[doi:10.3724/SP.J.1145.2009.00318]
 CHENG Yu,HONG Wei,WU Chengzhen,et al.Distribution Characters of Schima superba Aboveground Biomass and Its Produdtivity[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):318.[doi:10.3724/SP.J.1145.2009.00318]
[8]陈文年,吴彦,吴宁,等.高山草甸群落生物量在融雪梯度上的变化[J].应用与环境生物学报,2009,15(06):745.[doi:10.3724/SP.J.1145.2009.00745]
 CHEN Wennian,WU Yan,WU Ning,et al.Changes in Community Biomass along Snow-melting Gradient in Alpine Meadow[J].Chinese Journal of Applied & Environmental Biology,2009,15(04):745.[doi:10.3724/SP.J.1145.2009.00745]
[9]孙育平,王晓辉,胡韧,等.南亚热带高产渔业水库——显岗水库敞水区浮游植物群落结构的季节变化特征[J].应用与环境生物学报,2010,16(02):228.[doi:10.3724/SP.J.1145.2010.00228]
 SUN Yuping,WANG Xiaohui,HU Ren,et al.Seasonal Variation of Phytoplankton Communities in Xiangang Reservoir, a Tropical Shallow and High-yield Fishery Reservoir in South China[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):228.[doi:10.3724/SP.J.1145.2010.00228]
[10]张伟东,汪思龙,杨会侠,等.树种和凋落物对杉木林土壤微生物性质的影响[J].应用与环境生物学报,2010,16(02):168.[doi:10.3724/SP.J.1145.2010.00168]
 ZHANG Weidong,WANG Silong,YANG Huixia,et al.Effects of Broad-leaved Trees and Litter on Productivity and Soil Microbes of Chinese Fir Plantation[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):168.[doi:10.3724/SP.J.1145.2010.00168]

更新日期/Last Update: 2018-08-25