|本期目录/Table of Contents|

[1]张军,周丹丹,吴敏,等.生物炭对土壤硝化反硝化微生物群落的影响研究进展?[J].应用与环境生物学报,2018,24(05):993-999.[doi:10.19675/j.cnki.1006-687x.2017.11001]
 ZHANG?Jun,ZHOU?Dandan**,WU?Min,et al.Advances in the study of the effects of biochar on soil nitrifying and denitrifying microbial communities[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):993-999.[doi:10.19675/j.cnki.1006-687x.2017.11001]
点击复制

生物炭对土壤硝化反硝化微生物群落的影响研究进展?()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
993-999
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
Advances in the study of the effects of biochar on soil nitrifying and denitrifying microbial communities
作者:
张军周丹丹吴敏储刚常兆峰李芳芳李顺有
昆明理工大学环境科学与工程学院 昆明 650500
Author(s):
ZHANG?Jun ZHOU?Dandan** WU?Min CHU?Gang CHANG?Zhaofeng LI?Fangfang & LI?Shunyou
Faculty?of?Environmental?Science?and?Engineering, Kunming?University?of?Science?and?Technology, Kunming?650500, China
关键词:
生物炭硝化作用反硝化作用硝化细菌反硝化细菌
Keywords:
biochar nitrification denitrification nitrifying bacteria denitrifying?bacteria
分类号:
S154.36 : S158.5
DOI:
10.19675/j.cnki.1006-687x.2017.11001
摘要:
生物炭因具有发达的孔隙结构、丰富的表面官能团和无机矿物等特性,在控制农业面源污染和温室气体排放方面有着良好的应用前景. 生物炭对氮循环微生物群落特征的影响是生物炭能否有效控制面源污染和改良土壤的核心问题. 围绕生物炭对土壤氮循环微生物群落特征的影响,从生物炭的多元性、添加量和环境条件3个方面综述生物炭对土壤硝化和反硝化微生物的影响研究进展. 高温热解生物炭对土壤氮循环微生物的积极作用要比低温热解生物炭效果好;生物炭原料来源、添加量对土壤氮循环微生物群落的影响存在较大差异;添加有机肥料要比常规化肥更能提高氮循环微生物碳源的利用能力及其活性;环境中的污染物如多环芳烃(PAHs)、酚类化合物(PHCs)和重金属等的存在不利于氮循环微生物的生存. 随着分子生物技术的进步,未来应结合多种分子生态学技术和稳定同位素探针技术等手段研究生物炭对土壤氮循环微生物的影响机制,生物炭热解温度和添加量对土壤氮循环微生物的影响不容忽视,在长期的田间试验中应注意老化生物炭对污染物和氮循环微生物的影响. (表1 参75)
Abstract:
Biochar has high potential applicability for use in controlling agricultural non-point source pollution and greenhouse gas emissions because of its well-developed pore structure and high content of surface oxygen-containing functional groups, ash, and inorganic minerals. Uncertainty concerning the?effects of biochar on characteristics of the nitrogen cycling microbial community is a key problem facing its use for controlling non-point source pollution and improving soil quality.?In this study, the effects of biochar on soil nitrifying and denitrifying microorganisms were reviewed in terms of biochar’s diversity, the amount added, and environmental conditions. This review found that high temperature pyrolyzed biochar had better effects on soil nitrogen cycling microorganisms than low temperature pyrolyzed biochar. The sources of the biochar used, amount of biochar added, and soil pH had greater impacts on soil nitrogen cycling microbial communities. Organic fertilizers were able to improve the carbon utilization and activity of nitrogen cycling microbial communities more than conventional chemical fertilizers could. Environmental pollutants, such as polycyclic aromatic hydrocarbons, phenolic compounds, and heavy metals, are not conducive to the survival of nitrogen cycling microorganisms. Given recent advances in molecular biotechnology, future studies of the impact of biochar on soil nitrogen cycling microorganisms should be combined with a variety of molecular ecological techniques and stable isotope probe technology.?The influence of pyrolysis temperature and the amount of biochar used on soil nitrogen cycling microorganisms can also not be ignored. The differential effect of aged biochar on pollutants and nitrogen cycling microorganisms should be confirmed in long-term field trials.

参考文献/References:

1 Liu L, Shen G, Sun M, Cao X, Shang G, Chen P. Effect of biochar on nitrous oxide emission and its potential mechanisms [J]. J Air Waste Manage Assoc, 2014, 64 (8): 894-902
2 Ahmed A, Kurian J, Raghavan V. Biochar influences on agricultural soils, crop production, and the environment: a review [J]. Environ Rev, 2016, 24 (4): 495-502
3 Kong L, Gao Y, Zhou Q, Zhao X, Sun Z. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy [J]. J Hazard Mater, 2018, 343: 276-284
4 Vithanage M, Herath I, Almaroai YA, Rajapaksha AU, Huang L, Sung JK, Lee SS, Ok YS. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil [J]. Environ Geochem Health, 2017, 39 (6): 1409-1420
5 Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review [J]. Sci Tot Environ, 2018, 612: 522-537
6 Arif M, Ilyas M, Riaz M, Ali K, Shan K, Haq IU, Fahad S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil [J]. Field Crops Res, 2017, 214: 25-37
7 Reyes-Cabrera J, Leon RG, Erickson JE, Rowland DL, Silveira ML, Morgan KT. Differences in biomass and water dynamics between a cotton-peanut rotation and a sweet sorghum bioenergy crop with and without biochar and vinasse as soil amendments [J]. Field Crops Res, 2017, 214: 123-130
8 Sadaf J, Shah GA, Shahzad K, Ali N, Shahid M, Ali S, Hussain RA, Ahmed ZI, Traore B, Ismail IMI, Rashid MI. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers [J]. Sci Total Environ, 2017, 607: 715-724
9 Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320 (5878): 889-892
10 Yuan JH, Xu RK, Qian W, Wang RH. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars [J]. J Soils Sediments, 2011, 11 (5): 741-750
11 Xie Z, Xu Y, Liu G, Liu Q, Zhu J, Tu C, Amonette JE, Cadisch G, Yong JWH, Hu S. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China [J]. Plant Soil, 2013, 370 (1-2): 527-540
12 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20 (4): 779-785 [Yuan JH, Xu RK. Progress of the research on the properties of biochars and their influence on soil environmental functions [J]. Ecol Environ Sci, 2011, 20 (4): 779-785]
13 潘逸凡, 杨敏, 董达, 吴伟祥. 生物质炭对土壤氮素循环的影响及其机理研究进展[J]. 应用生态学报, 2013, 24 (9): 2666-2673 [Pan YF, Yang M, Dong D, Wu WX. Effects of biochar on soil nitrogen cycle and related mechanisms: a review [J]. Acta Ecol Sin, 2013, 24 (9): 2666-2673]
14 Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils [J]. Appl Environ Microbiol, 2011, 77 (13): 4618-4625
15 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40 (1): 98-108 [He JZ, Zhang LM. Key processes and microbial mechanisms of soil nitrogen transformation [J]. Microbiol Chin, 2013, 40 (1): 98-108]
16 Canfield DE, Glazer AN, Falkowski PG. The evolution and future of earth’s nitrogen cycle [J]. Science, 2010, 330 (6001): 192-196
17 周晨, 潘玉婷, 刘敏, 陈滢. 反硝化过程中氧化亚氮释放机理研究进展[J]. 化工进展, 2017, 36 (8): 3074-3084 [Zhou C, Pan YT, Liu M, Chen Y. Advance of mechanism on N2O emissions from biological denitrification [J]. Chem Ind Eng Prog, 2017, 36 (8): 3074-3084]
18 Lian F, Huang F, Chen W, Xing B, Zhu L. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single and bisolute systems [J]. Environ Pollut, 2011, 159 (4): 850-857
19 Zhang H, Voroney RP, Price GW. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations [J]. Soil Biol Biochem, 2015, 83: 19-28
20 Durenkamp M, Luo Y, Brookes PC. Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction [J]. Soil Biol Biochem, 2010, 42 (11): 2026-2029
21 Novak JM, Frederick JR, Bauer PJ, Watts DW. Rebuilding organic carbon contents in coastal plain soils using conservation tillage systems [J]. Soil Sci Soc Am J, 2009, 73 (2): 622-629
22 Chu G, Zhao J, Chen FY, Dong XD, Zhou DD, Liang N, Wu M, Pan B, Steinberg CEW. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation [J]. Environ Pollut, 2017, 227: 372-379
23 Peng HB, Gao P, Chu G, Pan B, Peng JH, Xing BS. Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars [J]. Environ Pollut, 2017, 229: 846-853
24 Zhou D, Chen B, Wu M, Liang N, Zhang D, Li H, Pan B. Ofloxacin sorption in soils after long-term tillage: the contribution of organic and mineral compositions [J]. Sci Total Environ, 2014, 497: 665-670
25 刘亮. 生物炭对土壤微生物及其强化修复多环芳烃污染的影响与机理研究[D]. 上海: 上海交通大学, 2015 [Liu L. The inflience and mechanism of biochar on soil microbial and enhanced remediation of PAH contamination [D]. Shanghai: Shanghai Jiaotong University; 2015]
26 Xu HJ, Wang XH, Li H, Yao HY, Su JQ, Zhu YG. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape [J]. Environ Sci Technol, 2014, 48 (16): 9391-9399
27 Bi QF, Chen QH, Yang XR, Li H, Zheng BX, Zhou WW, Liu XX, Dai PB, Li KJ, Lin XY. Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil [J]. Amb Express, 2017, 7 (1): 198
28 Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments [J]. Soil Biol Biochem, 2011, 43 (2): 385-392
29 Zimmerman AR. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) [J]. Environ Sci Technol, 2010, 44 (4): 1295-1301
30 武丽君. 生物炭对农田土壤氮素迁移及氨氧化作用的影响[D]. 太原: 太原理工大学, 2016 [Wu LJ. Effect of biochar on nitrogen migration and ammonia oxidation in farmland soil [D]. Taiyuan: Taiyuan University of Technology, 2016]
31 Lin Y, Ding W, Liu D, He T, Yoo G, Yuan J, Chen Z, Fan J. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria [J]. Soil Biol Biochem, 2017, 113: 89-98
32 Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HPH, Cornelissen G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars [J]. Environ Sci Technol, 2012, 46 (5): 2830-2838
33 Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants [J]. Appl Environ Microbiol, 2011, 77 (14): 4924-4930
34 Pietikainen J, Kiikkila O, Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus [J]. Oikos, 2000, 89 (2): 231-242
35 王晓辉, 郭光霞, 郑瑞伦, 钟敏, 朱永官. 生物炭对设施退化土壤氮相关功能微生物群落丰度的影响[J]. 土壤学报, 2013, 50 (3): 624-631 [Wang XH, Guo GX, Zhang RL, Zhong M, Zhu YG. Effect of biochar on abundance of N-related functional microbial communities in degraded greenhouse soil [J]. Acta Pedol Sin, 2013, 50 (3): 624-631]
36 Clough T, Condron L, Kammann C, Müller C. A review of biochar and soil nitrogen dynamics [J]. Agronomy, 2013, 3 (2): 275-293
37 梁桓, 索全义, 侯建伟, 刘长涛. 不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性[J]. 土壤, 2015, 47 (5): 886-891 [Liang H, Suo QY, Hou JW, Liu CT. The sturcture characteristics and chemical properties of maize straw biochar and artemisia ordosica biochar prepared at different carbonization temperatures [J]. Soils, 2015, 47 (5): 886-891]
38 Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity [J]. Soil Biol Biochem, 2009, 41 (6): 1301-1310
39 Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils [J]. Soil Biol Biochem, 2013, 57: 401-410
40 Karimi M, Hoodaji M, Tahmurespour A. The effect of phenol on heterotrophic ammonia-oxidizing bacteria in soils and waste waters [J]. J Res Agric Sci, 2012, 8 (1): 13-21
41 Wang ZY, Zheng H, Luo Y, Deng X, Herbert S, Xing BS. Characterization and influence of biochars on nitrous oxide emission from agricultural soil [J]. Environ Pollut, 2013, 174: 289-296
42 Wang ZY, Zong HY, Zheng H, Liu GC, Chen L, Xing BS. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar [J]. Chemosphere, 2015, 138: 576-583
43 Spokas KA, Baker JM, Reicosky DC. Ethylene: potential key for biochar amendment impacts [J]. Plant Soil, 2010, 333 (1-2): 443-452
44 Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil [J]. Plant Soil, 2012, 354 (1-2): 311-324
45 孙佳晶, 张蕾, 张超, 陈晓波. 有机物作用的厌氧氨氧化菌代谢特性研究进展[J]. 化工进展, 2012, 31 (8): 1834-1837 [Sun JJ, Zhang L, Zhang C, Chen XB. Metabolic characteristics of anaerobic ammonium oxidizing bacteria with organic matters [J]. Chem Ind Eng Prog, 2012, 31 (8): 1834-1837]
46 Schmidt AS, Mallon S, Thomsen AB, Hvilsted S, Lawther JM. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments [J]. J Wood Chem Technol, 2002, 22 (1): 39-53
47 Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil [J]. Biol Fertil Soils, 2011, 48 (3): 271-284
48 Feng YZ, Xu YP, Yu YC, Xie ZB, Lin XG. Mechanisms of biochar decreasing methane emission from Chinese paddy soils [J]. Soil Biol Biochem, 2012, 46 : 80-88
49 Mitchell PJ, Simpson AJ, Soong R, Simpson MJ. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil [J]. Soil Biol Biochem, 2015, 81: 244-254
50 Ducey TF, Ippolito JA, Cantrell KB, Novak JM, Lentz RD. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances [J]. Appl Soil Ecol, 2013, 65: 65-72
51 郭赟. 长期施肥对酸性及中性水稻土壤中氨氧化微生物的影响[D]. 南京: 南京师范大学, 2013 [Guo Z. Long-term fertilization affects ammonia-oxidizing prokaryotes in acidic and in neutral paddy soils [D]. Nanjing: Nanjing Normal University, 2013]
52 Ball PN, MacKenzie MD, DeLuca TH, Holben WE. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils [J]. J Environ Qual, 2010, 39 (4): 1243-1253
53 Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions [J]. FEMS Microbiol Ecol, 2010, 72 (3): 386-394
54 Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam [J]. Environ Microbiol, 2008, 10 (6): 1601-1611
55 潘逸凡. 生物质炭对稻田土壤氨氧化微生物的影响研究[D]. 杭州: 浙江大学, 2014 [Pan YF. Intluence of biochar on ammonia oxidation microbial community in daddy soil [D]. Hangzhou: Zhejiang University, 2014]
56 徐振华. 生物炭对中国北方酸化土壤的改性研究[D]. 青岛: 中国海洋大学, 2012 [Xu ZH. Effect of biochar amendment on acid soil in north China [D]. Qingdao: Ocean University of China, 2012]
57 Harter J, Krause H-M, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community [J]. ISME J, 2014, 8 (3): 660-674
58 Yanai Y, Toyota K, Okazaki M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Sci Plant Nutr, 2007, 53 (2): 181-188
59 Richardson D, Felgate H, Watmough N, Thomson A, Baggs E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key [J]. Trends Biotechnol, 2009, 27 (7): 388-397
60 Wu HP, Zeng GM, Liang J, Chen J, Xu JJ, Dai J, Li XD, Chen M, Xu PA, Zhou YY, Li F, Hu L, Wan J. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil [J]. Appl Microbiol Biotechnol, 2016, 100 (19): 8583-8591
61 陈晨, 许欣, 毕智超, 熊正琴. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J]. 环境科学学报, 2017, 37 (5): 1912-1920 [Chen C, Xu X, Bi ZC, Xiong ZQ. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production [J]. Acta Scien Circum, 37 (5): 1912-1920]
62 赵兰凤, 张新明, 程根, 张丽娟, 刘小锋, 李华兴. 生物炭对菜园土壤微生物功能多样性的影响[J]. 应用生态学报, 2017, 37 (14): 4754-4762 [Zhao LF, Zhang XX, Cheng G, Zhang LJ, Liu XF, Li HX. Effects of biochar on microbial functional diversity of vegetable garden soil [J]. Acta Ecol Sin, 2017, 37 (14): 4754-4762]
63 张云伟, 徐智, 汤利, 李艳红, 宋建群, 徐健钦. 不同有机肥对烤烟根际土壤微生物的影响[J]. 应用生态学报, 2013, 24 (9): 2551-2556 [Zhang YW, Xu Z, Tang L, Li YH, Song JQ, Xu JX. Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco [J]. Acta Ecol Sin, 2013, 24 (9): 2551-2556]
64 Dambreville C, Hallet S, Nguyen C, Morvan T, Germon JC, Philippot L. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate [J]. FEMS Microbiol Ecol, 2006, 56 (1): 119-31
65 Smith K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils [J]. Global Change Biol, 1997, 3 (4): 327-338
66 Sharma S, Szele Z, Schilling R, Munch JC, Schloter M. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil [J]. Appl Environ Microbiol, 2006, 72 (3): 2148-2154
67 Anyika C, Majid ZA, Ibrahim Z, Zakaria MP, Yahya A. The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils-a review [J]. Environ Sci Pollut Res, 2015, 22 (5): 3314-3341
68 Oleszczuk P, Hale SE, Lehmann J, Cornelissen G. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge [J]. Bioresour Technol, 2012, 111: 84-91
69 杨元根, Paterson E, Campbell C. 重金属Cu的土壤微生物毒性研究 [J]. 土壤通报, 2002, 33 (2): 137-141 [Yang YG, Paterson E, Campbell C. Study on microbial toxicity of heavy metal copper [J]. Chin J Soil Sci, 2002, 33 (2): 137-141]
70 张秀, 尚艺婕, 王海波, 史静. 重金属污染条件下生物质炭对土壤微生物群落结构及多样性影响的研究进展[J]. 中国农学通报, 2016, 32 (25): 147-152 [Zhang X, Shang YJ, Wang HB, Shi J. Advances in biochar effects on soil microbial community structure and diversity under heavy metal contamination [J]. Chin Agric Sci Bull, 2016, 32 (25): 147-152]
71 Sam AT, Asuming-Brempong S, Nartey EK. Microbial activity and metabolic quotient of microbes in soils amended with biochar and contaminated with atrazine and paraquat [J]. Acta Agric Scand B-Soil Plant Sci, 2017, 67 (6): 492-509
72 姚玲丹, 程广焕, 王丽晓, 陈环宇, 楼莉萍. 施用生物炭对土壤微生物的影响[J]. 环境化学, 2015, 34 (4): 697-704 [Yao LD, Cheng GH, Wang LX, Chen HY, Lou LP. Effects of biochar application to microorganisms in soil [J]. Environ Chem, 2015, 34 (4): 697-704]
73 Warnock DD, Lehmann J, Kuyper TW, Rillig MC. Mycorrhizal responses to biochar in soil - concepts and mechanisms [J]. Plant Soil, 2007, 300 (1-2): 9-20
74 侯海军, 秦红灵, 陈春兰, 魏文学. 土壤氮循环微生物过程的分子生态学研究进展[J]. 农业现代化研究, 2014, 35 (5): 78-84 [Hou HJ, Qin HL, Chen CL, Wei WX. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling [J]. Res Agric Mod, 2014, 35 (5): 588-594]
75 Spokas KA. Impact of biochar field aging on laboratory greenhouse gas production potentials [J]. GCB Bioenergy, 2013, 5 (2): 165-176

相似文献/References:

[1]何洁,刘长发,吴钰.三种载体上生物膜硝化作用动力学初步研究[J].应用与环境生物学报,2003,9(05):546.
 ZHONG Rong,et al..Spatialtemporal expression of fertility development in a novel Indica-Japonnica rice hybrid and sterile mutant—91FS[J].Chinese Journal of Applied & Environmental Biology,2003,9(05):546.
[2]刘琳,孙庚,吴彦,等.季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响[J].应用与环境生物学报,2011,17(04):453.[doi:10.3724/SP.J.1145.2011.00453]
 LIU Lin,SUN Geng,WU Yan,et al.Effect of Seasonal Snow Cover on Soil Nitrogen Mineralization in an Alpine Meadow on the Eastern Tibetan Plateau[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):453.[doi:10.3724/SP.J.1145.2011.00453]

更新日期/Last Update: 2018-10-25