|本期目录/Table of Contents|

[1]颜亮,张骁栋,王金枝,等.排水对沼泽湿地碳通量和碳储量的影响[J].应用与环境生物学报,2018,24(05):1023-1031.[doi:10.19675/j.cnki.1006-687x.2017.11031]
 YAN Liang,,et al.Drainage effects on carbon flux and carbon storage in swamps, marshes, and peatlands[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1023-1031.[doi:10.19675/j.cnki.1006-687x.2017.11031]
点击复制

排水对沼泽湿地碳通量和碳储量的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1023-1031
栏目:
综述
出版日期:
2018-10-25

文章信息/Info

Title:
Drainage effects on carbon flux and carbon storage in swamps, marshes, and peatlands
作者:
颜亮张骁栋王金枝李勇吴海东康晓明
1中国林业科学研究院湿地研究所 北京 1000912湿地生态功能与恢复北京市重点实验室 北京 1000913四川若尔盖高寒湿地生态系统定位观测研究站 阿坝 624500
Author(s):
YAN Liang1 2 3 ZHANG Xiaodong1 2 3 WANG Jinzhi1 2 3 LI Yong1 2 3 WU Haidong1 2 3 & KANG Xiaoming1 2 3**
1 Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China2 Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091,China3 Sichuan Zoige Wetland Ecosystem Research Station, Aba 624500, China
关键词:
排水沼泽湿地CO2通量CH4通量植被碳储量土壤碳储量
Keywords:
drainage swamps marshes and peatlands CO2 flux CH4 flux vegetation carbon storage soil carbon storage
分类号:
Q149
DOI:
10.19675/j.cnki.1006-687x.2017.11031
摘要:
沼泽湿地是全球重要的碳库,排水是沼泽湿地面临的主要人类活动干扰,排水后水位的改变引起沼泽湿地生态系统过程和功能的变化,进而对碳收支产生影响. 基于中国知网和Web of Science数据库检索和筛选65组数据(包括25组CO2通量、18组CH4通量和22组碳储量数据),综述国内外排水对沼泽湿地碳通量和碳储量影响的研究. 研究发现排水使沼泽湿地CH4与CO2通量改变,改变的幅度与湿地生态系统类型、排水时间及排水强度等因素有关. 排水后CH4的排放通量降低了29??%-75%. CO2通量的不同组分响应不同:排水后生态系统呼吸增加了10.9%??-120%;总初级生产力的响应有很大的差异,可能升高也可能降低;净初级生产力有变化但不显著;净生态系统生产力多为显著降低,变化幅度为1.8??%-290.4%. 排水对碳储量的影响更间接,多数研究表明排水后土壤碳储量显著降低,植被碳储量的变化不一致,与湿地类型和排水后的利用方式有关,存在不确定性. 已有研究多以某一特定排水时间或排水强度的实验研究为主,未来应加强不同排水强度对碳通量和碳储量的影响研究,研究方法上要将控制实验、野外调查与模型模拟研究相结合,以深入理解排水对湿地生态系统碳收支的影响,为湿地保护和恢复提供理论依据. (图1 表4 参45)
Abstract:
As major types of wetlands, swamps, marshes, and peatlands play important roles in the global carbon cycle. Drainage is the main source of disturbance in these wetlands, and causes water level drawdown and changes in the ecosystem carbon budget. This study aimed to review and integrate the available information on the effects of drainage on carbon flux and carbon storage in swamps, marshes, and peatlands worldwide. Based on searches of Web of Science and the China Knowledge Resource Integrated Database, we summarized a total of 65 datasets, including 25 sets of data on CO2 flux, 18 on CH4 flux, and 22 on carbon storage. This literature search showed that the CH4 flux in wetlands significantly decreased by 29%-75% after drainage, while the ecosystem respiration significantly increased by 10.9%-120%. The gross primary productivity increased or decreased after drainage. In most studies, the net ecosystem exchange significantly decreased after drainage, although with much variation (1.8%-290.4%). Compared to carbon flux, the impacts of drainage on carbon storage were indirect. Most studies found that soil organic carbon was significantly decreased after drainage, but the responses of vegetation carbon content to drainage varied. The impacts of drainage on carbon flux and storage varied with wetland type, drainage history, and the extent of water level drawdown. To provide a better theoretical basis for wetland protection and restoration, future studies should give more attention to wetlands’ responses to different levels of water level drawdown, and use combinations of controlled experiments, field investigations, and ecosystem modeling methods. This should better reveal the details of how carbon flux and storage in swamps, marshes, and peatlands respond to drainage.

参考文献/References:

1 Mitsch WJ, Bernal B, Nahlik AM, Mander ?, Zhang L, Anderson CJ, J?rgensen SE, Brix H. Wetlands, carbon, and climate change [J]. Landscape Ecol, 2013, 28 (4): 583-597
2 Yuan Y, Yan D, Wang H, Wang Q, Weng B. Quantitative assessment of drought in a lacustrine wetland based on a water balance model [J]. Nat Hazards, 2014, 70 (1): 693-703
3 Minkkinen K, Korhonen R, Savolainen I, Laine J. Carbon balance and radiative forcing of Finnish peatlands 1900-2100-the impact of forestry drainage [J]. Global Change Biol, 2002, 8 (8): 785-799
4 Turetsky MR, Benscoter B, Page S, Rein G, Werf GRVD, Watts A. Global vulnerability of peatlands to fire and carbon loss [J]. Nat Geosci, 2015, 8 (1): 11-14
5 Zhang X, Liu H, Baker C, Graham S. Restoration approaches used for degraded peatlands in Ruoergai (Zoige), Tibetan Plateau, China, for sustainable land management [J]. Ecol Eng, 2012, 38 (1): 86-92
6 王冬雪, 高永恒, 安小娟, 王瑞,谢青琰. 青藏高原高寒湿地温室气体释放对水位变化的响应[J]. 草业学报, 2016, 25 (8): 27-35 [Wang DX, Gao XH, An XJ, Wang R, Xie QY. Responses of greenhouse gas emissions to water table fluctuations in an alpine wetland on the Qinghai-Tibetan [J]. Acta Prata Sin, 2016, 25 (8): 27-35]
7 Hooijer A. Current and future CO2 emissions from drained peatlands in Southeast Asia [J]. Biogeosci Discuss, 2009, 7 (4): 1505-1514
8 Turunen J. Development of Finnish peatland area and carbon storage 1950-2000 [J]. Boreal Environ Res, 2008, 13 (4): 319-334
9 胡云龙, 白银萍, 董发勤, 陈槐, 黄晶, 刘明学, 杨刚. 泥炭地亚表层含碳温室气体排放及其影响因素[J]. 应用与环境生物学报, 2018, 24 (2): 395-400 [Hu YL, Bai YP, Dong FQ, Chen H, Huang J, Liu MX, Yang G. CO2 and CH4 emission from subsurface peatlands and its controlling factors [J]. Chin J Appl Environ Biol, 2018, 24 (2): 1-9]
10 张骁栋, 康晓明, 李春义, 崔丽娟, 王小文. 排水对三江平原和若尔盖沼泽生态影响的比较[J]. 生态学杂志, 2015, 34 (7): 2030-2040 [Zhang XD, Kang XM, Li CY, Cui LJ, Wang XW. Comparison of the drainage effects on ecological characteristics in Sanjiang Plain and Zoige Plateau [J]. Chin J Ecol, 2015, 34 (7): 2030-2040]
11 白军红, 欧阳华, 崔保山, 王庆改, 陈辉. 近40年来若尔盖高原高寒湿地景观格局变化[J]. 生态学报, 2008, 28 (5): 2245-2252 [Bai JH, Ou YH, Cui BS, Wang QG, Chen H. Changes in landscape pattern of alpine wetlands on the Zoige Platequ in the past four decades [J]. Acta Ecol Sin, 2008, 28 (5): 2245-2252]
12 Yan Z, Wu N. Rangeland privatization and its impacts on the Zoige wetlands on the Eastern Tibetan Plateau [J]. J Mount Sci, 2005, 2 (2): 105-115
13 崔丽娟, 马琼芳, 郝云庆, 高常军, 宋洪涛, 王义飞, 李伟. 若尔盖高寒沼泽植物群落与环境因子的关系[J]. 生态环境学报, 2013, 22(11): 1749-1756 [Cui LJ, Ma QF, Hao YQ, Gao CJ, Song HT, Wang YF, Li W. Relationships between main plant communities and environment in Zoige marsh [J]. Ecol Environ Sci, 2013 (11): 1749-1756]
14 李珂, 杨永兴, 杨杨, 韩大勇. 基于植被数量分类的排水疏干影响下若尔盖高原沼泽退化特征[J]. 应用生态学报, 2012, 23 (7): 1781-1789 [Li K, Yang YX, Yang Y, Han DY. Degradation characteristics of swamps in Zoige Plateau induced by drainage based on quantitative classification of vegetation [J]. Chin J Appl Ecol, 2012, 23 (7): 1781-1789]
15 杨永兴, 王世岩. 人类活动干扰对若尔盖高原沼泽土、泥炭土资源影响的研究[J]. 资源科学, 2001, 23 (2): 37-41 [Yang YX, Wang SX. Human disturbances on mire and peat soils in the zoige plateau [J]. Reson Sci, 2001, 23 (2): 37-41]
16 Luan JW, Cui LJ, Xiang CH, Wu JH, Song HT, Ma QF. Soil carbon stocks and quality across intact and degraded alpine wetlands in Zoige, east Qinghai-Tibet Plateau [J]. Wetl Ecol Manag, 2014, 22 (4): 427-438
17 李丽, 高俊琴, 雷光春, 吕偲, 索郎夺尔基. 若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律[J]. 生态学杂志, 2011, 30 (11): 2449-2455 [Li L, Gao JQ, Lei GC, Lü C, Suo L. Distribution patterns of soil organic carbon and total nitrogen in Zoige peat land with different ground water table [J]. Acta Ecol Sin, 2011, 30 (11): 2449-2455]
18 Gao JQ, Ouyang H, Lei GC, Zhang MX. Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê Alpine wetland, Qinghai-Tibet Plateau [J]. Chin Geogr Sci, 2011. 21 (1): 27-35
19 罗玲, 王宗明, 毛德华, 张柏, 路春燕, 满卫东. 沼泽湿地主要类型英文词汇内涵及辨析[J]. 生态学杂志, 2016, 35 (3): 834-842 [Luo Ling, Wang ZM, Mao DH, Zhang B, Lu CY, Man WD. Connotation and differentiation of terminology on main kinds of wetlands in English [J]. Acta Ecol Sin, 2016, 35 (3): 834-842]
20 Olefeldt D, Euskirchen ES, Harden J, Kane E, McGuire AD, Waldrop MP, Turetsky MR. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability [J]. Global Change Biol, 2017, 23(6): 2428-2440
21 J?rveoja J, Peichl M, Maddison M, Kaido S, Kai V, Edgar K, Alar T, ?lo M. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area [J]. Biogeosciences, 2016, 13 (9): 2637-2651
22 Wang H, Yu L, Zhang Z, Liu W, Chen L, Cao G, Yue H, Zhou J, Yang Y, Tang Y, He JS. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland [J]. Global Change Biol, 2017, 23 (2): 815-829
23 Ellis T, Hill PW, Fenner N, Williams GG, Godbold D, Freeman C. The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog [J]. Ecol Eng, 2009, 35 (6): 978-986
24 Berglund ?, Berglund K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil [J]. Soil Biol Biochem, 2011, 43 (5): 923-931
25 Pihlatie MK, Kiese R, Brüggemann N, Butterbach-Bahl K, Kieloaho AJ, Laurila T, Lohila A, Mammarella I, Minkkinen K, Penttil? T, Sch?nborn J, Vesala T. Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event [J]. Biogeosci Discuss, 2009, 6 (3): 1715-1727
26 Chen H , Wu N, Wang YF, Gao YH, Peng CH. Methane fluxes from alpine wetlands of Zoige plateau in relation to water regime and vegetation under two scales [J]. Water Air Soil Poll, 2011, 217 (1): 173-183
27 Song CC, Wang LL, Yang GS, Tian HQ, Lu CQ. Effect of continued nitrogen enrichment on greenhouse gas emissions from a wetland ecosystem in the Sanjiang Plain, Northeast China: a 5 year nitrogen addition experiment [J]. J Geophys Res-Biogeosci, 2013, 118 (2): 741-751
28 Yang JS, Liu JS, Hu XJ, Li XX, Wang Y, Li HY. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China [J]. Soil Biol Biochem, 2013, 61: 52-60
29 周文昌, 崔丽娟, 王义飞, 李伟, 康晓明. 若尔盖高原湿地不同微地貌区甲烷排放通量特征[J]. 植物生态学报, 2016, 40 (9): 902-911 [Zhou WC, Cui LJ, Wang YF, Li W, Kang XM. Charateristics of methane emission fluxes in the Zoige Plateau wetland on microtopography [J]. Chin J Plant Ecol, 2016, 40 (9): 902-911]
30 汪浩, 于凌飞, 陈立同, 王超, 贺金生. 青藏高原海北高寒湿地土壤呼吸对水位降低和氮添加的响应[J]. 植物生态学报, 2014, 38 (6): 619-625 [Wang H, Yu LF, Chen LT, Wang C, He JS. Responses of soil respiration to reduced water table and nitrogen addition in an alpine wetland on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2014, 38 (6): 619-625]
31 Li CS, Cui JB, Sun G, Trettin C. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems [J]. Environ Manage, 2004, 33 (1): 176-186
32 周文昌. 人类活动对若尔盖高原泥炭地碳通量和碳储量的影响[D]. 北京: 中国林业科学研究院, 2015 [Zhou WC. Effects of human activites on carbon fluxes and storage in the Zoige peatland of the Qinghai-Tibet Plateau [D]. Beijing: Chinese Academy of Forestry, 2015]
33 崔巍, 牟长城, 卢慧翠, 包旭, 王彪. 排水造林对大兴安岭湿地生态系统碳储量的影响[J]. 北京林业大学学报, 2013, 35 (5): 28-36 [Cui W, Mu CC, Lu HC, Bao X, Wang B. Effects of draining for forestation on carbon storage of wetland ecosystem in Daxing’an Mountains of northeastern China [J]. J Beijing For Univ, 2013, 35 (5): 28-36]
34 Strack M, Waddington JM, Tuittila ES. Effect of water table drawdown on northern peatland methane dynamics: implications for climate change [J]. Biogeochemistry, 2004, 18 (4): 286-289
35 Sturtevant CS, Ruddell BL, Knox SH, Verfaillie JG, Matthes JH, Oikawa PY, Baldocchi DD. Using wavelets and information theory to characterize the direction, strength, and time scale of interaction between environmental drivers and greenhouse gas exchange in managed wetlands of northern California [R]. San Francisco: AGU Fall Meeting, 2014
36 Yrj?l? K, Tuomivirta T, Juottonen H, Putkinen A. Lappi K, Tuittila E S, Penttil? T, Minkkinen K, Laine J, Peltoniemi K. CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown [J]. Global Change Biol, 2011, 17 (3): 1311-1320
37 徐宁泽. 排水对小兴安岭沼泽湿地土壤碳组分的影响[D]. 哈尔滨: 哈尔滨师范大学, 2016 [Xu NZ. Effects of wetland draine on soil carbon fractions in Xiaoxing’an mountains [D]. Harbin: Harbin Normal University, 2016]
38 周文昌, 索郎夺尔基, 崔丽娟, 王义飞, 李伟. 排水对若尔盖高原泥炭地土壤有机碳储量的影响 [J]. 生态学报, 2016, 36 (8): 2123-2132 [Zhou WC, SUO Langduo-erj, Cui L, Wang YF, Li W. Effects of drainage on soil organic carbon stock in the Zoige peatlands, eastern Qinghai-Tibetan Plateau [J]. Acta Ecol Sin, 2016, 36 (8): 2123-2132]
39 王丽丽, 宋长春, 葛瑞娟, 宋艳宇, 刘德燕. 三江平原湿地不同土地利用方式下土壤有机碳储量研究[J]. 中国环境科学, 2009, 29 (6): 656-660 [Wang LL, Song CC, Ge RJ, Song YY, Liu DY. Soil organic carbon storage under different land-use types in Sanjiang Plain [J]. Chin Environ Sci, 2009, 29 (6): 656-660]
40 迟光宇, 王俊, 陈欣, 史奕. 三江平原不同土地利用方式下土壤有机碳的动态变化[J]. 土壤, 2006, 38 (6): 755-761 [Chi GY, Wang J, Chen X, Shi Y. Dynamic changes of soil organic carbon (SOC) of different land use types in SanJiang Plain [J]. Soils, 2006, 38 (6): 755-761]
41 Sulman BN, Desai AR, Mladenoff DJ. Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape [J]. Ecosystems, 2013, 16 (3): 491-507
42 Minkkinen K, Laine J. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland [J]. Can J For Res, 1998, 28 (9): 1267-1275
43 Ma K, Liu, JG, Balkovi? J, Skalsk? R, Azevedo LB, Kraxner F. Changes in soil organic carbon stocks of wetlands on China’s Zoige plateau from 1980 to 2010 [J]. Ecol Model, 2016, 327: 18-28
44 Chimner RA, Pypker TG, Hribljan JA, Moore PA, Waddington JM. Multi-decadal changes in water table levels alter peatland carbon cycling [J]. Ecosystems, 2017, 20(5): 1-16
45 Song WM, Wang H, Wang GS, Chen LT, Jin ZN, Zhuang QL, He JS. Methane emissions from an alpine wetland on the Tibetan Plateau: neglected but vital contribution of the nongrowing season [J]. J Geophys Res-Biogeosci, 2015, 120 (8): 1475-1490

更新日期/Last Update: 2018-10-25