|本期目录/Table of Contents|

[1]赵耀,王百田,李萌,等.晋西吕梁山区3种森林碳氮磷生态化学计量特征[J].应用与环境生物学报,2018,24(03):518-524.[doi:10.19675/j.cnki.1006-687x.2017.11039]
 ZHAO Yao,WANG Baitian,**,et al.Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):518-524.[doi:10.19675/j.cnki.1006-687x.2017.11039]
点击复制

晋西吕梁山区3种森林碳氮磷生态化学计量特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
518-524
栏目:
研究论文
出版日期:
2018-06-30

文章信息/Info

Title:
Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province
作者:
赵耀王百田李萌王旭虎董秀群
1北京林业大学水土保持学院 北京 100083 2水土保持与荒漠化防治教育部重点实验室 北京 100083 3北京林业大学生物科学与技术学院 北京 100083
Author(s):
ZHAO Yao1 WANG Baitian1 2** LI Meng3 WANG Xuhu1 & DONG Xiuqun1
1 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2 Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing 100083, China 3 College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
关键词:
叶片枯落物土壤碳氮磷生态化学计量特征
Keywords:
leaf litter soil carbon nitrogen and phosphorus ecological stoichiometric characteristics
分类号:
S718.554
DOI:
10.19675/j.cnki.1006-687x.2017.11039
摘要:
以吕梁山区3种人工林(山杨林、落叶松林和油松林)为研究对象,采用标准样地的实测数据,探索植物叶片、枯落物及表层(0-20 cm)土壤的碳(C)、氮(N)、磷(P)生态化学计量特征,并进行相关性分析. 结果显示,不同森林类型同一组分C、N、P含量差异显著,叶片、枯落物、土壤的C、N含量均为山杨林大于落叶松林和油松林,P含量为落叶松林大于山杨林和油松林. 3种森林C、N、P含量均为叶片>枯落物>土壤,且叶片与枯落物 C、N、P 含量显著高于土壤;C:N、C:P均表现为枯落物>叶片>土壤,N:P则表现为叶片>土壤>枯落物. 山杨林枯落物N:P与土壤N:P呈现显著正相关;落叶松林叶片C:N与枯落物N:P呈现显著负相关,叶片C:P与土壤N:P呈现显著正相关;油松林叶片N:P与土壤N:P呈现显著正相关. 以3种森林类型总体来说,叶片与土壤N含量呈现显著正相关,而枯落物与土壤C、N、P之间均无显著相关. 上述研究表明,环境因素对土壤C、N、P计量特征的影响较大,尤其是纬度和海拔对土壤C、N、P及C:N、C:P的影响最为显著,且均为显著正相关;结果可为进一步研究该地区不同树种的养分利用和循环特征提供科学依据. (图2 表4 参42)
Abstract:
Using a standard plot method, the stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in leaves, litter, and soil (0–20 cm depth) was investigated for three forest types: Populus davidiana, Larix principis-rupprechtii, and Pinus tabuliformis. The results showed that the stoichiometry of C, N, and P of the same component in the three forests were significantly different. The C and N contents in leaves, litter, and soil in P. davidiana forest were higher than those in L. principis-rupprechtii and P. tabuliformis forests were. However, P in the L. principis-rupprechtii forest was higher than that in the P. davidiana forest and P. tabuliformis forests were. The C, N, and P contents of the components in the three forests were, in order, leaves > litter > soil, and the three nutrient contents were significantly higher in leaves and litter than they were in soil. C:N and C:P in the three forests exhibited a trend of litter > leaves > soil, whereas that for N:P was leaves > soil > litter. There were highly significant positive relationships in N:P between the litter and the soil in the P. davidiana forest. Leaf C:N and litter C:P in the L. principis-rupprechtii forest were significantly negatively correlated, whereas N:P in the leaves and soil was positively correlated. There was a significant positive correlation in N:P between the leaves and the soil in the P. tabuliformis forest. In conclusion, the N contents in leaves and soil exhibited a significant positive correlation, whereas there was no significant correlation between C, N, and P in litter or soil. Environmental factors had a large influence on the stoichiometry of C, N, and P in soil. In particular, latitude and altitude had the most significant effects on C, N, P, C:N, and C:P and were significantly positively correlated. These results provide a scientific basis for further studies on nutrient utilization and the cyclic characteristics of different forests in this area.

参考文献/References:

1. Reich PB, Tjoelker MG, Machado JL, Oleksyn J. Universal scaling of respiratory metabolism, size and nitrogen in plants [J]. Nature, 2006, 439 (7075): 457-4601
2. Sterner RW, Elser JJ. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere [M]. Princeton: Princeton University Press, 2002: 584
3. 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34 (1): 2-6 [He JS, Han XG. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems [J]. Chin J Plant Ecol, 2010, 34 (1): 2-6]
4. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ. Biological stoichiometry from genes to ecosystems [J]. Ecol Lett, 2010, 3 (6): 540-550
5. 项文化, 黄志宏, 闫文德, 田大伦, 雷丕锋. 森林生态系统碳氮循环功能耦合研究综述[J]. 生态学报, 2006, 26 (7): 2365-2372 [Xiang WH, Huang ZH, Yan WD, Tian DL, Lei PF. Review on coupling of interactive functions between carbon and nitrogen cycles in forest ecosystems [J]. Acta Ecol Sin, 2006, 26 (7): 2365-2372]
6. 平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响[J]. 生态学报, 2014, 34 (8): 1965-1974 [Ping C, Wang CK, Quan XK. Influence of environmental changes on stoichiometric traits of nitrogen and phosphorus for Larix gmelinii trees [J]. Acta Ecol Sin, 2014, 34 (8): 1965-1974]
7. 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28 (8): 3937-3947 [Wang SQ, Yu GR. Ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in ecosystems [J]. Acta Ecol Sin, 2008, 28 (8): 3937-3947]
8. 王维奇, 徐玲琳, 曾从盛, 仝川, 张林海. 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2011, 31 (23): 7119-7124 [Wang WQ, Xu LL, Zeng CS, Tong C, Zhang LH. Carbon, nitrogen and phosphorus ecological stoichiometric ratios among live plant-litter-soil systems in estuarine wetland [J]. Acta Ecol Sin, 2011, 31 (23): 7119-7124]
9. Reeder, Jean D. Theoretical ecosystem ecology: understanding element cycles [J]. Q Rev Biol, 1998, 163 (97): 421-423
10. Ladanai S, Olsson BA. Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden [J]. Ecosystems, 2010, 13 (2): 302-316
11. Mcgroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios [J]. Ecology, 2004, 85 (9): 2390-2401
12. Cleveland CC, Liptzin D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85 (3): 235-252
13. 姜沛沛, 曹扬, 陈云明, 赵一娉. 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征[J]. 生态学报, 2017, 37 (2): 443-454 [Jiang PP, Cao Y, Chen YM, Zhao YP. N and P stoichiometric characteristics of leaves, litter and soil for three dominant tree species in the Shaanxi Province [J]. Acta Ecol Sin, 2017, 37 (2): 443-454]
14. 姜沛沛, 曹扬, 陈云明. 陕西省森林群落乔灌草叶片和凋落物C、N、P 生态化学计量特征[J]. 应用生态学报, 2016, 27 (2): 365-372 [Jiang PP, Cao Y, Chen YM. C, N, P stoichiometric characteristics of tree, shrub, herb leaves and litter in forest community of Shaanxi Province, China [J]. Chin J Appl Ecol, 2016, 27 (2): 365-372]
15. 崔鸿侠, 肖文发, 黄志霖, 曾立雄, 潘磊, 庞宏东. 神农架3种针叶林土壤碳储量比较[J]. 东北林业大学学报, 2014, 42 (3): 69-72 [Cui HX, Xiao WF, Huang ZL, Zeng LX, Pan L, Pang HD. Soil organic carbon storage of three coniferous forests in Shennongjia Nature Reserve [J]. J Nor For Univ, 2014, 42 (3): 69-72]
16. 朱秋莲, 邢肖毅, 张宏, 安韶山. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33 (15): 4674-4682 [Zhu QL, Xing XY, Zhang H, An SS. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region [J]. Acta Ecol Sin, 2013, 33 (15):4674-4682]
17. 任书杰, 于贵瑞, 陶波, 王绍强. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28 (12): 2665-2673 [Ren SJ, Yu GR, Tao B, Wang SQ. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC [J]. Environ Sci, 2007, 28 (12): 2665-2673]
18. 戚德辉, 温仲明, 王红霞, 郭茹, 杨士梭. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36 (20): 6420-6430 [Qi DH, Wen ZM, Wang HX, Guo R, Yang SS. Ecological stoichiometry characteristics of leaf-litter-soil in different plantations on the Loess Plateau, China [J]. Acta Ecol Sin, 2016, 36 (20): 6420-6430]
19. 白雪娟, 曾全超, 安韶山, 张海鑫, 王宝荣. 黄土高原不同人工林叶片-凋落叶-土壤生态化学计量特征[J]. 应用生态学报, 2016, 27 (12): 3823-3830 [Bai XJ, Zeng QC, An SS, Zhang HX, Wang BR. Ecological stoichiometry characteristics of leaf-litter-soil in different plantations on the Loess Plateau, China [J]. Chin J Appl Ecol, 2016, 27 (12): 3823-3830]
20. 曹建华, 李小波, 赵春梅, 蒋菊生, 谢贵水. 森林生态系统养分循环研究进展[J]. 热带农业科学, 2009, 27 (6): 68-79 [Cao JH, Li XB, Zhao CM, Jiang JS, Xie GS. Advances on researches of nutrient cycling in forest ecosystem [J]. Chin J Trop Agric, 2009, 27 (6): 68-79]
21. 闫涛, 朱教君, 杨 凯, 于立忠. 辽东山区落叶松人工林地上生物量和养分元素分配格局[J]. 应用生态学报, 2014, 25 (10): 2772-2778 [Yan T, Zhu JJ, Yang K, Yu LZ. Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China [J]. Chin J Appl Ecol, 2014, 25 (10): 2772-2778]
22. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants [J]. Ecol Monogr, 2012, 82 (2): 205-220
23. Iii FSC, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from alaskan birch leaves [J]. Ecology, 1991, 72 (2): 709-715
24. Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: how can it occur? [J]. Biogeochemistry, 1991, 13 (2): 87-115
25. Gusewell S. N:P ratios in terrestrial plants: variation and functional significance [J]. N Phytol, 2004, 164 (2): 243-266
26. Koerselman W. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33 (6): 1441-1450
27. 任书杰, 曹明奎, 陶波, 李克让. 陆地生态系统氮状态对碳循环的限制作用进展[J]. 地理科学进展, 2006, 25 (4): 58-67 [Ren SJ, Cao MK, Tao B, Li KR. Advances of the limiting effects of nitrogen status on carbon cycling in terrestrial ecosystems [J]. Prog Geogr, 2006, 25 (4): 58-67]
28. Hassett RP, Cardinale B, Stabler LB, Elser JJ. Ecological stoichiometry of N and P in pelagic ecosystems: Comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction [J]. Limnol Oceanogr 1997, 42 (4): 648-662
29. 王宝荣, 曾全超, 安韶山, 张海鑫, 白雪娟. 黄土高原子午岭林区两种天然次生林植物叶片-凋落叶-土壤生态化学计量特征[J]. 生态学报, 2017, 37 (16): 5461-5473 [Wang BR, Zeng QC, An SS, Zhang HX, Bai XJ. C:N:P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling region of the Loess Plateau [J]. Acta Ecol Sin, 2017, 37 (16): 5461-5473]
30. Kang HZ, Xin ZJ, Berg B, Burgess PJ, Liu QL, Liu ZC, Li ZH, Liu CJ. Global pattern of leaf litter nitrogen and phosphorus in woody plants [J]. Ann For Sci, 2010, 67 (8): 811-811
31. Chapin FS III, Matson PA, Mooney HA. Principles of terrestrial ecosystem ecology [M]. New York: Springer-Verlag, 2002: 436
32. 杨佳佳, 张向茹, 马露莎, 陈亚南, 党廷辉, 安韶山. 黄土高原刺槐林不同组分生态化学计量关系研究[J]. 土壤学报, 2014, 51 (1): 133-142 [Yang JJ, Zhang XR, Ma LS, Chen YN, Dang TH, An SS. Ecological stoichiometric relationships between components of Robinia pseudoacacia forests on the Loess Plateau [J]. Acta Pedol Sin, 2014, 51 (1): 133-142]
33. Hobbie SE, Gough L. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska [J]. Oecologia, 2002, 131 (3): 453-462
34. Post WM, Pastor J, Zinke PJ, Stangenberger AG. Global patterns of soil nitrogen storage [J]. Nature, 1985, 317 (6038): 613-616
35. 孙超. 基于生态化学计量学的草地退化研究[D]. 长春: 吉林大学, 2012 [Sun C. Study on grassland degradation based on ecological chemical metrology [D]. Changchun: Jilin University, 2012]
36. 马永跃, 王维奇. 闽江河口区稻田土壤和植物的C、N、P含量及其生态化学计量比[J]. 亚热带农业研究, 2011, 7 (3): 182-187 [Ma YY, Wang WQ. Carbon, nitrogen and phosphorus content and the ecological stoichiometric ratios of paddy field soil-plants in Minjiang River estuary [J]. Subtr Agric Res, 2011, 7 (3): 182-187]
37. Garnier E. Interspecific variation in plasticity of grasses in response to nitrogen supply [D]. Cambridge: Cambridge University Press, 1998
38. Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 2004, 101 (30): 11001-11006
39. Pan GX. Acidification of soils in Mount Lushan over the last 35 years [J]. Pedosphere, 1992, 2 (2): 179-182
40. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment [J]. Global Change Biol, 2011, 17 (6): 2211-2226
41. 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23 (2): 400-408 [Feng DF, Bao WK. Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors [J]. Chin J Appl Environ Biol, 2017, 23 (2): 400-408]
42. Xu XF, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems [J]. Global Ecol Biogeogr, 2013, 22 (6): 737-749
43.

相似文献/References:

[1]黄玉梅,刘盼,陈莹佳,等.草坪草白三叶枯落物质量损失过程及土壤动物的贡献[J].应用与环境生物学报,2016,22(22卷04):654.[doi:10.3724/SP.J.1145.2016.01038]
 HUANG Yumei,LIU Pan,CHEN Yingjia,et al.Contribution of soil fauna to the mass loss of Trifolium repens L. litter*[J].Chinese Journal of Applied & Environmental Biology,2016,22(03):654.[doi:10.3724/SP.J.1145.2016.01038]

更新日期/Last Update: 2018-06-30