|本期目录/Table of Contents|

[1]余厚平,王童童,简敏菲,等.模拟采食下克隆整合对虉草生长及生理特征的影响[J].应用与环境生物学报,2018,24(03):434-440.[doi:10.19675/j.cnki.1006-687x.2017.12006]
 YU Houping,WANG Tongtong,et al.Effects of clonal integration on the growth and physiology of Phalaris arundinacea under simulated herbivory[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):434-440.[doi:10.19675/j.cnki.1006-687x.2017.12006]
点击复制

模拟采食下克隆整合对虉草生长及生理特征的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年03期
页码:
434-440
栏目:
研究论文
出版日期:
2018-06-30

文章信息/Info

Title:
Effects of clonal integration on the growth and physiology of Phalaris arundinacea under simulated herbivory
作者:
余厚平王童童简敏菲罗杰欣
1江西师范大学生命科学学院,江西省亚热带植物资源保护与利用重点实验室 南昌 330022 2江西师范大学鄱阳湖湿地与流域研究教育部重点实验室 南昌 330022
Author(s):
YU Houping1 2 WANG Tongtong1 JIAN Minfei1 2** & LUO Jiexin1
1 Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, China 2 Key Laboratory of Poyang Lake Wetland and Watershed Research (Ministry of Education), Jiangxi Normal University, Nanchang 330022, China
关键词:
虉草克隆整合模拟采食均质性环境生长指标光合生理
Keywords:
Phalaris arundinace clonal integration simulated herbivory homogeneous environment growth index photosynthetic physiology
分类号:
Q945.78
DOI:
10.19675/j.cnki.1006-687x.2017.12006
摘要:
为了解克隆整合对克隆植物适应均质性采食环境胁迫的作用,以江西省鄱阳湖-乐安河段河岸带优势根状茎克隆物种虉草(Phalaris arundinacea)为对象,研究均质性采食条件下虉草的生理生态响应以及克隆整合在虉草应对模拟采食两月后发挥的作用. 模拟采食(去叶)强度设置4组水平:不去叶(CK对照组)、去叶25%、去叶50%和去叶75%;克隆整合采用2种方式:茎切断和连接. 结果显示,无论是否进行断茎处理,模拟采食均显著(P < 5%)降低虉草的叶片数、地上枝总长度、分株数和生物量,去叶处理下断茎的虉草分株相对茎连接分株具有更强生长优势. 断茎和去叶处理对虉草叶绿素含量无显著影响,断茎的虉草分株在25%、50%去叶水平下叶绿素a(Chl a)、叶绿素b(Chl b)和总叶绿素(Chlt)含量均高于茎连接的分株,所有去叶处理强度下断茎的虉草分株各叶绿素指标均高于对照组. 去叶显著影响了虉草分株各光合指标,断茎分株在50%、75%去叶水平上的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)等指标均高于茎连接分株,25%去叶处理组则相反;去叶处理的虉草分株的Pn、Tr、Ci均低于对照组. 因此,采食引起虉草分株光合速率下降,使营养物质积累不足,导致生长状态下降;虉草能够在一定程度上适应均质性采食处理带来的压力,但是克隆整合不能显著改善均质性采食条件下虉草的生长. (图5 表3 参40)
Abstract:
In order to investigate the effects of clonal integration on the adaptation of clonal plants to the environmental stress of homogeneous herbivory, we conducted a greenhouse experiment to investigate the ecophysiological response characteristics of Phalaris arundinacea collected from the riparian zone of the Poyang Lake wetland and Le’an River in Jiangxi Province and the effect of clonal integration on this dominant plant under two-months of simulated cyclical homogenous herbivory. Simulated herbivory strength was set at four different levels: no leaf removal (control) and 25%, 50%, and 75% leaf removal. We implemented two methods of clonal integration including no integration, in which the rhizome connection was severed, and integration, in which the rhizome connection was intact. We found that simulated herbivory significantly decreased the number of leaves, total shoot length, number of ramets, and biomass of P. arundinacea (P < 5%), regardless of whether the rhizomes were intact or severed. Ramets with severed rhizome connections (RRC) generally had higher growth indices than those with intact rhizome connections (RIC). Severing rhizomes did not significantly affect the chlorophyll content of P. arundinacea, while RRC under simulated herbivory intensities of 25% and 50% leaf removal had higher chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chlt) contents than RIC did, and simulated herbivory increased the chlorophyll contents of all ramets. RRC net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were all higher in RRC than they were in RIC under simulated herbivory intensities of 50% and 75% leaf removal; however, the opposite relationship was observed under a simulated herbivory intensity of 25% leaf removal. Further, simulated herbivory limited the photosynthetic index of P. arundinacea. These effects resulted in an inadequate accumulation of nutrients in the plant. Phalaris arundinacea can adapt to simulated herbivory treatments in terms of growth, but clonal integration cannot improve the growth of P. arundinacea under a homogeneous herbivory treatment.

参考文献/References:

1. 董鸣, 于飞海. 克隆植物生态学术语和概念[J]. 植物生态学, 2007, 31: 689-694 [Dong M, Yu FH. Terminology and concepts of clonal plant ecology [J]. J Plant Ecol, 2007, 31: 689-694]

2. Hutchings MJ, Wijesinghe DK. Patchy habitats, division of labour and growth dividends in clonal plants [J]. Trends Ecol Evol, 1997, 12 (10): 390

3. Dong M. Effects of severing on clonal growth in rhizomatous grass species Psammochloa villosa and Leymus secalinua [J]. J Integr Plant Biol, 1999, 41 (2): 194-198

4. Tuya F, Espino F, Terrados J. Preservation of seagrass clonal integration buffers against burial stress [J]. J Exp Mar Biol Ecol, 2013, 439 (1): 42-46

5. Gruntman M, Anders C, Mohiley A, Laaser T, Clemens S, H?reth S, Tielb?rger K. Clonal integration and heavy-metal stress: responses of plants with contrasting evolutionary backgrounds [J]. Evol Ecol, 2016, 6: 1-12

6. Zhang YC, Zhang QY, Sammul M. Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis [J]. PLoS ONE, 2012, 7 (9): e44221

7. You WH, Han CM, Liu CH, Yu D. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability [J]. Sci Rep, 2016, 6: 29767

8. 郭伟, 李钧敏, 胡正华. 酸雨和采食模拟胁迫下克隆整合对空心莲子草生长的影响[J]. 生态学报, 2012, 32 (1): 151-158 [Guo W, Li JM, Hu ZH. Effects of clonal integration on growth of Alternanthera philoxeroides under simulated acid rain and herbivory [J]. Acta Ecol Sin, 2012, 32 (1): 151-158]

9. 刘以珍, 张祖芳, 蔡奇英, 陈明华, 葛刚. 赣江河岸带植被的数量分析[J]. 长江流域资源与环境, 2014, 23 (7): 923-929 [Liu YZ, Zhang ZF, Cai YQ, Chen MH, Ge G. Structure and composition of piparian vegetation in Gan river [J]. Res Environ Yangtze Basin, 2014, 23 (7): 923-929]

10. 胡彬, 翟文静, 赵警卫. 河岸带植被对河流生态功能影响研究进展[J]. 福建林业科技, 2015, 42 (3): 233-239 [Hu B, Zai WJ, Zhao JW. Progresses in researches on the influence of riparian vegetation on river ecological functions [J]. J Fujian For Sci Technol, 2015, 42 (3): 233-239]

11. 王宁, 高艳. 两种践踏胁迫下克隆整合对入侵植物空心莲子草生长的影响[J]. 生态科学, 2011, 30 (2): 97-101 [Wang N, Gao Y. Effects of clonal integration on growth of invasive plant Alternanthera philoxeroides under two kinds of trampleing stress [J]. Ecol Sci, 2011, 30 (2): 97-101]

12. 张文军. 羊草克隆整合对碱环境异质性的响应[D]. 北京: 中国农业大学, 2014 [Zhang WJ. Responce of Leymus chinensis clonal integration to heterogeneous alkaline environment [D]. Beijing: China Agricultural University, 2014]

13. 曹丽娜. 北方乡村河流生态修复效果评价[D]. 长春: 东北师范大学, 2013 [Cao LN. Assessment on effect of river restoration in north rural area [D]. Changchun: Northeast Normal University, 2013]

14. 黄琳. 河岸带植物对环境胁迫的响应-多物种比较研究[D]. 北京: 北京林业大学, 2013 [Huang L. Responses of riparian plants to environmental stresses: a multi-species comparison [D]. Beijing: Beijing Forestry University, 2013]

15. Lindigcisneros R, Zedler JB. Relationships between canopy complexity and germination microsites for Phalaris arundinacea L. [J]. Oecol, 2002, 133 (2): 159-167

16. 张永亮, 骆秀梅. 虉草的研究进展[J]. 草地学报, 2008, 16 (6): 659-666 [Zhang YL, Luo XM. Research progress of reed canarygrass [J]. Acta Agres Sin, 2008, 16 (6): 659-666]

17. 宋家壮, 李萍萍, 付为国. 水分胁迫及复水对虉草生理生化特性的影响[J]. 草业学报, 2012, 21 (2): 62-69 [Song JZ, Li PP, Fu WG. Effects of water and rewatering on the physiological and biochemical characteristics of Phalaris arundinace [J]. Acta Pra Sin, 2012, 21 (2): 62-69]

18. Cong LL, Zhang XQ, Li YX, Cheng KK, Zhang YW. Response of reed canary grass to salt stress during seed germination and vegetative stage [J]. Adv Mater Res, 2012, 518-523: 5355-5362

19. 李雁博, 张蕴薇, 哈依夏, 杜金鸿, 刘源, 陈果. 须芒草、虉草和柳枝稷对干旱和盐胁迫的生理响应[J]. 草业科学, 2014, 31 (5): 905-914 [Li YB,Zhang YW, Ha YX, Du JH, Liu Y, Chen G, Wang QZ. Physiological responses of bluestem,reed canarygrass and seitchgrass under drought and salinity stress [J]. Pratacult Sci, 2014, 31 (5): 905-914]

20. B?ezinová T, Vymazal J. Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland [J]. Ecol Eng, 2015, 79 (3): 94-99

21. Arnon DI. Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris [J]. Plant Physiol, 1949, 24 (1): 1-15

22. Dong BC, Alpert P, Zhang Q, Yu FH. Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides [J]. Oecol, 2015, 179 (2): 393-403.

23. 朱志玲, 李德志, 王绪平, 盛丽娟, 石强. 克隆植物的水分生理整合及其生态效应[J]. 西北植物学报, 2006, 26 (12): 2602-2614 [Zhu ZL, Li DZ, Wang XP, Sheng LJ, Shi Q. Water physiology integration and its ecological effect of clonal plants [J]. Acta Bot Boreal-Occident Sin, 2006, 26 (12): 2602-2614]

24. Zhang H, Liu F, Wang R, Jian L. Roles of clonal integration in both heterogeneous and homogeneous habitats [J]. Front Plant Sci, 2016, 7 (551): 1-8

25. Luo D, Qian YQ, Han L, Liu JX, Sun ZY. Phenotypic responses of a stoloniferous clonal plant Buchloe dactyloides to scale-dependent nutrient heterogeneity [J]. PLoS ONE, 2013, 8 (6): e67396

26. Li L, Geng Y, Lan Z, Chen J, Song Z. Phenotypic plasticity of aquatic plants in heterogeneous environments: a review [J]. Biodiv Sci, 2016, 24 (2): 216-227

27. 陶应时, 洪胜春, 廖咏梅, 黎云祥, 廖兴利, 权秋梅. 异质性光照下匍匐茎草本狗牙根克隆整合的耗益[J]. 生态学报, 2013, 33 (20): 6509-6516 [Tao YS, Hong SC, Liao YM, Li YX, Liao XL, Quan QM. A cost-benefits of the clonal integration of Cynodon dactylon, a stolon herbaceous plant under heterogeneous lighting condition [J]. Acta Ecol Sin, 2013, 33 (20): 6509-6516]

28. Pauliukonis N, Gough L. Effects of the loss of clonal integration on four sedges that differ in ramet aggregation [J]. Plant Ecol, 2004, 173 (1): 1-15

29. 段九菊, 王云山, 康黎芳, 张超, 王曼, 杜少敏, 曹冬梅. 高温胁迫对观赏凤梨叶片抗氧化系统和渗透调节物质积累的影响[J]. 中国农学通报, 2010, 26 (8): 164-169 [Duan JJ, Wang YS, Kang LF, Zhang C, Wang M, Du SM, Cao DM. Effects of high temperature stress on antioxidant system and accumulation of osmotic adjustment substance of Bromeliaceae [J]. Chin Agri Sci Bull, 2010, 26 (8): 164-169]

30. 李跃强, 宣维健, 盛承发. 大强度去叶对棉花叶绿素和保护酶系的影响[J]. 生态学报, 2006, 26 (3): 830-836 [Li YQ, Xuan WJ, Sheng CF. Activities of chlorophyll and protective enzyme systems in cotton plants Gossypium hirsutum L.with heavy leaf removal by no overcompensation [J]. Acta Ecol Sin, 2006, 26 (3): 830-836]

31. Kou JT, Shi SL, Hu GX, Jing KK. Comparison of compensatory photosynthesis between resistant and Susceptible alfalfa clones as physiological response to damage by thrips [J]. Acta Entomol Sin, 2011, 54 (8): 910-917

32. Liu J, He WM, Zhang SM, Liu FH, Dong M, Wang RQ. Effects of clonal integration on photosynthesis of the invasive clonal plant Alternanthera philoxeroides [J]. Photosynthetica, 2008, 46 (2): 299-302

33. Hayashi M, Fujita N, Yamauchi A. Theory of grazing optimization in which herbivory improves photosynthetic ability [J]. J Theor Biol, 2007, 248 (2): 367

34. 赵威, 李亚鸽, 王艳杰. 植物补偿性光合作用的发生模式及生理机制分析[J]. 植物生理学报, 2016, 12: 1811-1818 [Zhao W, Li YG, Wang YJ. The occurrence patterns and physiological mechanism analysis of plant compensatory photosynthesis [J]. J Plant Physiol, 2016, 12: 1811-1818]

35. Reiling K, Davison AW. Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. [J]. New Phytol, 2010, 129 (4): 587-594

36. Pozo AD, Perez P, Morcuende R, Alonso A, Martinezcarrasco R. Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of n supply in a mediterranean environment [J]. Plant Sci, 2005, 169 (5): 908-916

37. 赵昕, 吴雨霞, 赵敏桂, 何建新. NaCl胁迫对盐芥和拟南芥光合作用的影响[J]. 植物学报, 2007, 24 (2):154-160 [Zhao X, Wu YX, Zhao MG, He JX. Response of photosynthesis function of salt Cress and Arabidopsis to NaCl salt stress [J]. Chin Bull Bot, 2007, 24 (2): 154-160]

38. Chen JS, Lei NF, Ming D. Clonal integration improves the tolerance of Carex praeclara to sand burial by compensatory response [J]. Acta Oecol, 2010, 36, 23-28

39. Venter N, Hill MP, Hutchinson SL, Ripley BS. Weevil borne microbes contribute as much to the reduction of photosynthesis in water hyacinth as does herbivory [J]. Biol Control, 2013, 64 (2): 138-142

40. 王文相, 张爱芳. 水稻白叶枯病剪叶接种和喷雾接种方法的比较[J]. 安徽农业科学, 2010, 38 (12): 6247-6249 [Wang WX, Zhang AF. Comparison on leaf-cutting inoculation and spray inoculation of rice bacterial blight [J]. J Anhui Agri Sci, 2010, 38 (12): 6247-6249]

41.

相似文献/References:

[1]简敏菲,** 王童童 余厚平 罗杰欣.模拟采食下克隆整合对虉草生长及生理特征的影响*[J].应用与环境生物学报,2018,24(05):1.[doi:10.3724/SP.J.1145.2017.12006]
 JIAN Minfei **,WANG Tongtong,YU Hou-ping &LUO Jiexin.Effects of Clonal Integration on Growth and Physioloy of Phalaris arundinacea under Simulated Herbivory*[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):1.[doi:10.3724/SP.J.1145.2017.12006]

更新日期/Last Update: 2018-06-30