|本期目录/Table of Contents|

[1]闫华,张汝兵,咸漠.聚氨酯的生物降解研究进展?[J].应用与环境生物学报,2018,24(05):985-992.[doi: 10.19675/j.cnki.1006-687x.2017.12015]
 YAN Hua,ZHANG Rubing** & XIAN Mo.Progress in research on polyurethane biodegradation[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):985-992.[doi: 10.19675/j.cnki.1006-687x.2017.12015]
点击复制

聚氨酯的生物降解研究进展?()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
985-992
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
Progress in research on polyurethane biodegradation
作者:
闫华张汝兵咸漠
中国科学院青岛生物能源与过程研究所,中国科学院生物基材料重点实验室 青岛 266101
Author(s):
YAN Hua ZHANG Rubing** & XIAN Mo
CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
关键词:
聚氨酯生物降解绿色降解生物酶解生物氧化
Keywords:
polyurethane biodegradation green decompose biological enzymatic hydrolysis biological oxidation
分类号:
TQ323.8 : X172
DOI:
10.19675/j.cnki.1006-687x.2017.12015
摘要:
聚氨基甲酸酯(PU)因具有高强度、抗撕裂、耐磨损等诸多优势,广泛应用于各个领域,但是聚氨酯材料不易降解,给生态环境安全造成很大危害. 使用生物方法降解聚氨酯成为当今的研究热点. 概述聚氨酯的现状、生物降解机理和研究进展,并结合近年来开展的聚氨酯生物降解实例,重点阐述细菌和真菌降解聚氨酯的机理及进展情况. 研究发现,真菌降解聚氨酯主要通过分泌酶进行作用,真菌附着在聚氨酯材料的表面,通过生物体的繁殖和菌丝的生长破坏聚氨酯材料的结构,同时分泌水解酶、尿素酶、蛋白酶等进一步作用,共同完成聚氨酯的生物降解;而细菌降解聚氨酯时,自身先产生一种水溶性胞内酶连接细菌的细胞膜和聚氨酯材料,然后分泌胞外酶破坏聚氨酯底物,将聚氨酯材料分解为小分子物质,而降解生成的小分子则可被细菌生物体直接代谢,最终完成聚氨酯的降解. 最后探讨聚氨酯生物降解存在的问题,并展望发展趋势,指出未来应依据聚氨酯的种类、特点来筛选针对性的降解菌株,并开展生物降解作用机理研究,为聚氨酯生物降解工艺技术的研发提供理论支撑. (图4 表1 参68)
Abstract:
Polyurethane (PU) is widely used in various parts of modern life due to its high strength, versatility, and resistance. However, polyurethane degrades slowly in nature, so polyurethane waste disposal usually results in serious environmental problems, such as contaminated soil, altered soil ecology, and low water quality. In recent years, biodegradation of polyurethane has become a hot topic of research aimed at finding ways to potentially solve this problem. In this study, the current status, biodegradation mechanisms, and progress in the study of polyurethane were briefly summarized. The degradation mechanisms of polyurethane by bacteria and fungi and research progress on these topics were emphasized by describing examples of the biological degradation of polyurethane studied in recent years. It was found that fungal biodegradation of polyurethane occurs mainly by the means of secretase. Fungi usually attach to the surface of polyurethane material and will destroy its structure through facilitating the reproduction of other microorganisms and the growth of their own mycelium; meanwhile, fungi are able to secret hydrolase, urease, and protease, which further contribute to the biodegradation of polyurethane. When degrading polyurethane, bacteria first produce a water-soluble extracellular enzyme that can connect the bacterial cell membrane to the polyurethane material. Bacteria then secrete another extracellular enzyme to destroy the polyurethane substrate and decompose it into smaller molecules that can be directly metabolized by the bacteria, which eventually completes the degradation of polyurethane. Finally, the status and existing problems involved in research on the biodegradation of polyurethane were discussed. Trends in the development of polyurethane biodegradation were also examined. Future research should focus on the isolation of specific polyurethane-degrading strains for different types of polyurethanes with different characteristics, as well as further studying the mechanisms of polyurethane biodegradation, and thus provide theoretical support for research on the development of polyurethane biodegradation technology.

参考文献/References:

1. 朱长春, 翁汉元, 吕国会, 张俊良. 国内外聚氨酯工业最新发展状况[J]. 化学推进剂与高分子材料, 2012, 10 (5): 7-26 [Zhu CC, Weng HY, Lü GH, Zhang JL. The latest development status of polyurethane industry at home and abroad [J]. Chem Propell Polym Mater, 2012, 10 (5): 7-26]
2. Gómez EF, Luo XL, Li C, Michel Jr FC, Li Y. Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation [J]. Polym Degrad Stabil, 2014, 102 (4): 195-203
3. Bernardini J, Anguillesi I, Coltelli M, Cinelli P, Lazzeri A. Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents [J]. Polym Int, 2015, 64 (9): 1235-1244
4. 董飞逸, 沈兰萍. 可降解聚氨酯材料的研究及应用现状[J]. 合成纤维, 2015, 44 (7): 9-13 [Dong FY, Shen LP. Research and application status of biodegradable polyurethane materials [J]. Synth Fiber Chin, 2015, 44 (7): 9-13]
5. Tokiwa Y, Calabia BP. Degradation of microbial polyesters [J]. Biotechnol Lett, 2004, 26 (15): 1181-1189
6. Howard GT. Biodegradation of polyurethane: a review [J]. Int Biodeter Biodegr, 2002, 49 (4): 245-252
7. 莫迎华. 塑料废弃物的综合治理研究进展[J]. 合成树脂及塑料, 2016, 33 (1): 89-92 [Mo YH. Research progress of comprehensive treatment of waste plastics pollution [J]. Chin Synth Resi Plast, 2016, 33 (1): 89-92]
8. 博思数据研究中心. 2016-2022年中国聚氨酯工业市场趋势预测与趋势预测研究报告[R/OL]. 2015 http: //www. bosidata. com/qtzzh1601/Y67504EUS0. html [Bosidata. Research report on market trend prediction and trend prediction of China’s polyurethane industry in 2016-2022 years [R/OL]. 2015]
9. 2014年我国聚氨酯行业产量约938万吨, 继续保持快速增长态势[EB/OL]. http://www. bosidata. com/huagongshichang1601/728029CJZO. html [2017-12-07]
10. 2015聚氨酯行业产量总结[EB/OL]. http: //www. chinaiol. com/pu/q/0129/87164624. html [2017-2-07]
11. Ignatyev IA, Thielemans W, Vander BB. Recycling of polymers: a review [J]. Chemsuschem, 2014, 7 (6): 1579
12. 陈海平, 乔迁, 涂根国. 聚氨酯材料的化学降解机理[J]. 辽宁化工, 2007 (8): 535-539 [Chen HP, Qiao Q, Tu GG. The chemical degradation mechanism of polyurethane [J]. Liaoning Chem Ind, 2001 (8): 535-539]
13. 季宝, 许毅, 翟现明. 聚氨酯材料的降解机理及其稳定剂[J]. 聚氨酯工业, 2008, 23 (6): 39-42 [Ji B, Xu Y, Zhai XM. The mechanism of polyurethane degradation and Stabilizers [J]. Polym Ind, 2008, 23 (6): 39-42]
14. 葛志强, 徐浩星, 李忠友, 程新丽. 聚氨酯废弃物的处理和回收利用[J]. 化学推进剂与高分子材料, 2008 (1): 65-68 [Ge ZQ, Xu HX, Li ZY, Cheng XL. Treatment and recovery methods for polyurethane wastes [J]. Chem Propell Polym Mater, 2008 (1): 65-68]
15. 叶青萱. 可生物降解型聚氨酯[J]. 粘接, 2016, 37 (1): 67-76 [Ye QX. Biodegradable polyurethanes [J]. Adhesion, 2016, 37 (1): 67-76]
16. Volova TG, Boyandin N, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xu?n BB, Dung VV, Gitelson II. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria [J]. Polym Degrad Stabil, 2010, 95 (12): 2350-2359
17. 方增滨, 崔航, 张翔, 涂伟萍. 可生物降解型聚氨酯的降解机理及研究进展[J]. 工程塑料应用, 2016, 44 (3): 141-144 [Fang ZB, Cui H, Zhang X, Tu WP. Degradable mechanism and research progress of biodegradable polyurethane [J]. Eng Plast Appl, 2016, 44 (3): 141-144]
18. 戈进杰, 施兴海, 吴睿, 王珉, 李文俊. 单宁聚氨酯土壤微生物降解研究[J]. 化学学报, 2001, 59 (11): 2018-2023 [Ge JJ, Shi XM, Wu R, Wang M, Li WJ. Studies on biodegradation of polyurethane foams in soils [J]. Acta Chim Sin, 2001, 59 (11): 2018-2023]
19. Rueda L, D’Arlas BF, Corcuera MA, Eceiza A. Biostability of polyurethanes. Study from the viewpoint of microphase separated structure [J]. Polym Degrad Stabil, 2014, 108 (1): 195-200
20. Darby RT, Kaplan AM. Fungal susceptibility of polyurethanes [J]. Appl Microbiol, 1968, 16 (6): 900
21. Tokiwa Y, Suzuki T. Degradation of poly-ethylene glycol adipate by a fungus [J]. J Ferment Technol, 1974, 52: 393-398
22. Hung CS, Zingarelli S, Nadeau LJ, Biffinger JC, Drake CA, Crouch AL, Barlow DE, Russell Jr JN, Crookes-Goodson WJ. Carbon catabolite repression and Impranil polyurethane degradation in pseudomonas protegens strain Pf-5 [J]. Appl Environ Microb, 2016, 82 (20): 6080-6090
23. Marcos-Fernández A, Abraham GA, Valentín JL, San Román J. Synthesis and characterization of biodegradable non-toxic poly (ester-urethane-urea)s based on poly (ε-caprolactone) and amino acid derivatives [J]. Polymers, 2006, 47 (3): 785-798
24. Sarkar D, Lopina ST. Oxidative and enzymatic degradations of L-tyrosine based polyurethanes [J]. Polym Degrad Stabil, 2007, 92 (11): 1994-2004
25. 吕强, 曹传宝, 朱鹤孙. SO2等离子体处理对聚氨酷抗凝血性影响的研究[J]. 高技术通讯, 2003, 13 (10): 53-60 [Lü Q, Cao CB, Zhu HS. The effect of SO2 plasma treatment on antithrombin of polyurethane [J]. Chin High Technol Lett, 2003, 13 (10): 53-60]
26. 王卫, 王明慧, 黄学青. 聚醚胺基聚脲的合成及其性能[J]. 过程工程学报, 2009, 9 (3): 598-602 [Wang W, Wang MH, Huang XQ. Synthesis and performance of degradable PEA-based polyurethane [J]. Chin J Proc Eng, 2009, 9 (3): 598-602]
27. Labow RS, Tang Y, Mccloskey CB, Santerre JP. The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly (urethane)s [J]. J Biomater Sci Polym Ed, 2002, 13 (6): 651-65
28. Volynskii AL, Bazhenov S, Lebedeva OV, Bakeev NF. Mechanical buckling instability of thin coatings deposited on soft polymer substrates [J]. J Mater Sci, 2000, 35 (3): 547-554
29. Stachelek SJ, Alferiev I, Choi H, Chan CW, Zubiate B, Sacks M, Composto R, Chen IW, Levy RJ. Prevention of oxidative degradation of polyurethane by covalent attachment of di-tert-butylphenol residues [J]. J Biomed Mater Res A, 2006, 78 (4): 653-661
30. Christenson EM, Dadsetan M, Wiggins M, Anderson JM, Hiltner A. Poly (carbonate urethane) and poly (ether urethane) biodegradation: In vivo studies [J]. J Biomed Mater Res A, 2004, 69 (3): 407-416
31. Xie X, Wang R, Li J, Luo L, Wen D, Zhong Y, Zhao C. Fluorocarbon chain end-capped poly (carbonate urethane)s as biomaterials: blood compatibility and chemical stability assessments [J]. J Biomed Mater Res B, 2009, 89 (1): 223-241
32. Mahajan N, Gupta P. New insights into the microbial degradation of polyurethanes [J]. Rsc Adv, 2015, 5 (52): 41839-41854
33. Santerre JP, Woodhouse K, Laroche G, Labow R S. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials [J]. Biomaterials, 2005, 26 (35): 7457-7740
34. Zafar U, Nzeram P, Langaricafuentes A, Houlden A, Heyworth A, Saiani A, Robson GD. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities [J]. Bioresource Technol, 2014, 158 (2): 374-377
35. Umare Suresh S, Chandure AS. Synthesis, characterization and biodegradation studies of poly (ester urethane)s [J]. Chem Eng J, 2008, 142 (1): 65-77
36. Krasowska K, Janik H, Gradys A, Rutkowska M. Degradation of polyurethanes in compost under natural conditions [J]. J Appl Poly Sci, 2012, 125 (6): 4252-4260
37. Schmidt J, Wei R, Oeser T, Silva LAD, Breite D, Schulze A, Zimmermann W. Degradation of polyester polyurethane by bacterial polyester Hhydrolases [J]. Polymers, 2017, 9 (2): 65-74
38. Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW. Biodegradation of a colloidal ester-based polyurethane by soil fungi [J]. Int Biodeter Biodegr, 1994, 33 (2): 103-113
39. ?lvarezbarragán J, Domínguez-Malfavón L, Vargas-Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams [J]. Appl Environ Microb, 2016, 82 (17): 5225-5235
40. Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales) [J]. Stud Mycol, 2010, 67 (67): 1-94
41. Bensch K, Groenewald JZ, Braun U, Dijksterhuis J, Yá?ezmorales MDJ, Crous PW. Common but different: the expanding realm of Cladosporium [J]. Stud Mycol, 2015, 82 (82): 23-74
42. Mathur G, Prasad R. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil [J]. Appl Biochem Biotechnol, 2012, 167 (6): 1595-1602
43. Matsumiya Y, Murata N, Tanabe E, Kubota K, Kubo M. Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp. J Appl Microb, 2010, 108 (6): 1946–1953
44. Zafar U, Houlden A, Robson GD. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures [J]. Appl Environ Microb, 2013, 79 (23): 7313-7324
45. Khan S, Nadir S, Shah ZU, Shah AA, Karunarathna SC, Xu JC, Khan A, Munir S, Hasan F. Biodegradation of polyester polyurethane by Aspergillus tubingensis [J]. Environ Pollut, 2017, 225 (1): 469
46. Loredo-Trevi?o A, Gutiérrez-Sánchez G, Rodrígurez-Herrera R, Aguilar CN. Microbial enzymes involved in polyurethane biodegradation: a review [J]. J Polym Environ, 2012, 20: 258-265
47. Oprea S. Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure [J]. Polym Degrad Stabil, 2010, 95 (12): 2396-2404
48. 左文耀. 可降解形状记忆聚氨酯的合成及其酶促降解研究[D]. 天津: 天津大学, 2006 [Zuo WY. Synthesis and enzymatic degradation of degradable polyurethanes with shapememory effect [D]. Tianjin: Tianjin University, 2006]
49. Boubendir A. Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin [D]. Salford: University of Salford, 1992
50. 黄汉生. 医用聚氨酯研究开发动向[J]. 化工新型材料, 1995, 4 (6): 38-39 [Huang HS. Research and development trend of medical polyurethane [J]. New Chem Mater, 1995, 4 (6): 38-39]
51. El-Sayed AHMM, Mahmoud WM, Davis EM, Coughlin RW. Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria [J]. Int Biodeter Biodegr, 1996, 37 (1-2): 69-79
52. Mahajan N, Gupta P. New insights into the microbial degradation of polyurethanes [J]. Rsc Adv, 2015, 5 (52): 41839-41854
53. Stepien AE, Zebrowski J, ?ukasz Piszczyk, Boyko VV, Riabov SV, Dmitrieva T, Bortnitskiy VI, Gonchar M, Wojnarowska-Nowak R, Ryszkowska J. Assessment of the impact of bacteria Pseudomonas denitrificans, Pseudomonas fluorescens, Bacillus subtilis, and yeast Yarrowia lipolytica, on commercial poly (ether urethanes) [J]. Poly Test, 2017, 63: 484-493
54. Howard GT, Ruiz C, Hilliard NP. Growth of Pseudomonas chlororaphis on apolyester–polyurethane and the purification and characterization of a polyurethanase-esterase enzyme [J]. Int Biodeter Biodegr, 1999, 43 (1-2): 7-12
55. Mukherjee K, Tribedi P, Chowdhury A, Ray T, Joardar A, Giri S, Sil AK. Isolation of a Pseudomonas aeruginosa, strain from soil that can degrade polyurethane diol [J]. Biodegradation, 2011, 22 (2): 377-388
56. Spontón M, Casis N, Mazo P, Raud B, Simonetta A, Ríos L, Estenoz D. Biodegradation study by Pseudomonas, sp. of flexible polyurethane foams derived from castor oil [J]. Int Biodeter Biodegr, 2013, 85 (7): 85-94
57. Peng YH, Shih YH, Lai YC, Liu YZ, Liu YT, Lin NC. Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain [J]. Env Sci Pollut Res Int, 2014, 21 (16): 9529-9537
58. Nakajima-Kambe T, Onuma F, Akutsu Y, Nakahara T. Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35 [J]. J Ferment Bioeng, 1997, 83 (5): 456-460
59. Akutsu Y, Nakajimakambe T, Nomura N, Nakahara T. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35 [J]. Appl Environ Microb, 1998, 64 (1): 62-67
60. Shah AA. Role of microorganisms in biodegradation of plastics [J]. Expert Rev Clin Phar, 2007, 2 (4): 333-337
61. Rowe L, Howard GT. Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme [J]. Int Biodeter Biodegr, 2002, 50 (1): 33-40
62. Sajitha N, Pradeep K. Molecular characterization of a lipase-producing Bacillus pumilus strain (NMSN-1d) utilizing colloidal water-dispersible polyurethane [J]. World J Microb Biotechnol, 2007, 23 (10): 1441-1449
63. Shah Z, Gulzar M, Hasan F, Shah AA. Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas, and Bacillus, species isolated from soil [J]. Polym Degrad Stabil, 2016, 134: 349-356
64. Sarkar S, Adhikari B. Biodegradation of lactic acid and polyethylene glycol based polyester urethanes [J]. Indian J Chem Techn, 2007, 14 (3): 221-228
65. Ocegueracervantes A, Carrillogarcía A, López N, Bola?osnu?ez S, Cruzgómez MJ, Wacher C, Loza-Tavera H. Characterization of the polyurethanolytic activity of two Alicycliphilus sp. strains able to degrade polyurethane and N-methylpyrrolidone [J]. Appl Environ Microb, 2007, 73 (19): 6214-6223
66. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly (ethylene terephthalate) [J]. Science, 2016, 351 (6278): 1196-1199
67. Griffin GJL. Synthetic polymers and the living environment [J]. Pure Appl Chem, 1980, 52 (2): 399-407
68. Howard GT. Biodegradation of polyurethane: a review [J]. Int Biodeter Biodegr, 2002, 49 (4): 245-252
69.

相似文献/References:

[1]许华夏,宋玉芳,井欣,等.生物泥浆反应器中微生物数量变化与PAHs降解[J].应用与环境生物学报,2000,6(05):452.
 XU Huaxia,et al..The variation of amount of microbes and its relations with the degradation of PAHs in the bioslurry reactor[J].Chinese Journal of Applied & Environmental Biology,2000,6(05):452.
[2]胡忠,吴奕瑞,徐艳,等.海洋苯酚降解菌Candida sp. P5的分离鉴定及其降解特性[J].应用与环境生物学报,2007,13(02):243.
 HU Zhong,et al..Screening of a Marine Phenoldegrading Yeast Candida sp. P5 and its Biodegradation Characteristics[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):243.
[3]王春明,李大平,刘世贵.4株多环芳烃降解菌的分离及鉴定[J].应用与环境生物学报,2007,13(04):546.
 WANG Chunming,et al..Screening and Identification of Four PAHsbiodegrading Strains[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):546.
[4]苟敏,曲媛媛,杨桦,等.鞘氨醇单胞菌:降解芳香化合物的新型微生物资源[J].应用与环境生物学报,2008,14(02):276.
 GOU Min,et al..Sphingomonas sp.: A Novel Microbial Resource for Biodegradation of Aromatic Compounds[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):276.
[5]骆祝华,黄翔玲,叶德赞.环境内分泌干扰物——邻苯二甲酸酯的生物降解研究进展[J].应用与环境生物学报,2008,14(06):890.[doi:10.3724/SP.J.1145.2008.00890]
 LUO Zhuhua,HUANG Xiangling,et al.Advances in Research of Biodegradation of Environmental Endocrine Disruptors-Phthalate Esters[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):890.[doi:10.3724/SP.J.1145.2008.00890]
[6]颜克亮,任大军,王宏勋,等.不同基质体系中白腐菌对喹啉和吲哚的降解[J].应用与环境生物学报,2008,14(06):809.[doi:10.3724/SP.J.1145.2008.00809]
 YAN Keliang,REN Dajun,WANG Hongxun & ZHANG Xiaoyu**.Biodegradation of Quinoline and Indole by Pleurotus ostreatus in Different Substrate Systems[J].Chinese Journal of Applied & Environmental Biology,2008,14(05):809.[doi:10.3724/SP.J.1145.2008.00809]
[7]何丽娟,李正华,洪青,等.一株菲降解菌的特性及相关降解基因的克隆[J].应用与环境生物学报,2009,15(05):682.[doi:10.3724/SP.J.1145.2009.00682]
 HE Lijuan,LI Zhenghua,HONG Qing & LI Shunpeng.Characterization of A Phenanthrene-degrading Strain and Cloning of Degradation-related Gene[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):682.[doi:10.3724/SP.J.1145.2009.00682]
[8]邱吉国,郑金伟,张隽,等.乙羧氟草醚降解菌Pseudomonas sp. YF1的分离、鉴定与降解特性[J].应用与环境生物学报,2009,15(05):686.[doi:10.3724/SP.J.1145.2009.00686]
 QIU Jiguo,ZHENG Jinwei,ZHANG Jun,et al.Isolation, Identification and Characteristics of a Fluoroglycofen-ethyl-degrading Bacterium YF1[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):686.[doi:10.3724/SP.J.1145.2009.00686]
[9]颜克亮,吴航军,王宏勋,等.白腐菌Trametes hirsute对六氯苯的降解及其条件优化[J].应用与环境生物学报,2009,15(05):698.[doi:10.3724/SP.J.1145.2009.00698]
 YAN Keliang,WU Hangjun,WANG Hongxun,et al.Biodegradation of Hexachlorobenzene by Trametes hirsute and Optimization of Its Culture Conditions[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):698.[doi:10.3724/SP.J.1145.2009.00698]
[10]冷玲,李顺鹏,张迹.甲苯降解菌JB-1的分离、鉴定及其降解特性研究[J].应用与环境生物学报,2010,16(01):118.[doi:10.3724/SP.J.1145.2010.00118]
 LENG Ling,ZHANG Ji,LI Shunpeng.Isolation, Identification and Characteristics of A Toluene-Degrading Bacterium JB-1[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):118.[doi:10.3724/SP.J.1145.2010.00118]

更新日期/Last Update: 2018-10-25