|本期目录/Table of Contents|

[1]巩子毓,斯天任,孙逸飞,等.田间连续应用生物育苗基质育苗增加设施黄瓜产量[J].应用与环境生物学报,2018,24(05):967-971.[doi:10.19675/j.cnki.1006-687x.2017.12019]
 GONG Ziyu,SI Tianren,et al.Continuous application of a bio-nursery substance to nursery seedlings improved greenhouse cucumber yield[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):967-971.[doi:10.19675/j.cnki.1006-687x.2017.12019]
点击复制

田间连续应用生物育苗基质育苗增加设施黄瓜产量()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
967-971
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
Continuous application of a bio-nursery substance to nursery seedlings improved greenhouse cucumber yield
作者:
巩子毓斯天任孙逸飞王东升王蓓李荣沈其荣
1江苏省固体有机废弃物资源化高技术研究重点实验室,国家有机类肥料工程技术研究中心,江苏省有机固体废弃物资源化协同创新中心,南京农业大学资源与环境科学学院 南京 210095 2环境保护部南京环境科学研究所 南京 210042 3南京市蔬菜科学研究所 南京 210042
Author(s):
GONG Ziyu1 2 SI Tianren1 SUN Yifei1 WANG Dongsheng1 3 WANG Bei1 3 LI Rong1** & SHEN Qirong1
1 Jiangsu Key Laboratory of Solid Organic Waste Utilization, National Engineering Research Centre for Organic-based Fertilizer, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China 2 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China 3 Nanjing Institute of Vegetable Science, Nanjing 210042, China
关键词:
生物基质黄瓜产量土壤理化性质尖孢镰刀菌
Keywords:
bio-nursery substance cucumber yield soil physicochemical property Fusarium oxysporum
分类号:
S359.3 : S626
DOI:
10.19675/j.cnki.1006-687x.2017.12019
摘要:
为评估田间连续移栽由根际促生菌与普通育苗基质联合研制成的生物育苗基质所育种苗的增产效果,通过田间试验,研究连续5季,移栽含解淀粉芽胞杆菌SQR9生物育苗基质所育种苗对设施黄瓜产量、生物量、土壤理化及尖孢镰刀菌数量的影响. 结果显示,连续5季移栽生物育苗基质所育黄瓜种苗处理(OFNS)的黄瓜产量,每一季均高于移栽普通育苗基质所育黄瓜种苗对照(OF)的产量,在第1、2、3、4和5季,分别提高了2.74%、4.35%、5.95%、15.14%和11.07%,且第4和5季产量间具有显著性差异. 相比于OF处理,OFNS处理连续5季均提高了黄瓜的株高和茎粗,有效提高了土壤中速效钾、速效磷、电导率、全氮和总钾的含量,同时降低了土体土壤和根际土壤中尖孢镰刀菌的数量. 本研究表明,连续5季移栽生物育苗基质所育种苗能够有效促进黄瓜生长和提高黄瓜产量,结果可为根际有益微生物新产品的开发提供新思路以及为设施蔬菜高产栽培提供指导. (图2 表2 参28)
Abstract:
Bio-nursery substrate is produced by combining plant growth-promoting rhizobacteria (PGPR) with ordinary nursery substrate. The transformation of seedlings with the novel product (bio-nursery substrate) in the field can then be used to evaluate the yield-enhancing effects of the substrate, which can provide practical guidance and support for the development of high-yield plantations in facility agriculture, as well as for the effective application of PGPR. In the present study, the effects of transforming cucumber seedlings using a bio-nursery substrate produced by combining Bacillus amyloliquefaciens SQR9 and ordinary nursery substrate on the plant biomass, fruit yield, soil physiochemical properties, and Fusarium oxysporum f. sp. cucumerinum numbers were investigated in five successive seasons of field experiments in a plastic greenhouse. Results showed that over five continuous seasons the transformation of cucumber seedlings with a bio-nursery substrate (with organic fertilizor and nursery strain, OFNS) resulted in a higher fruit yield compared to that of control seedlings transformed with the ordinary nursery substrate, and yields were increased by 2.74%, 4.35%, 5.95%, 15.14%, and 11.07% in the 1st, 2nd, 3rd, 4th, and 5th seasons, respectively. Significant differences were also observed between the 4th and 5th seasons. Moreover, during these 5–season-long experiments, OFNS treatment improved the plant height and stem diameter, enhanced the content of available potassium, available phosphorus, electrical conductivity (EC), total nitrogen (TN), and total phosphorus (TP) in the soil, and reduced the number of F. oxysporum in both the bulk and rhizosphere soils compared to the control. In summary, the results of the field experiment conducted over 5 consecutive seasons indicated that the transformation of seedlings in a bio-nursery substrate effectively promoted plant growth and enhanced fruit yields. These results will help provide a novel strategy for developing new PGPR products and supply technical support for establishing high-yield plantations of greenhouse vegetables.

参考文献/References:

1. 吴舒. 蔬菜供给、地区结构及供给效应研究[D]. 北京: 中国农业大学, 2017 [Wu S, Vegetable supply, regional structure and the effect of supply: a case study of Beijing [D]. Beijing: China Agricultural University, 2017]
2. 邵玉飞, 马建, 陈欣. 利用煤矸石制作水稻育苗基质的研究[J]. 农业资源与环境学报, 2017 (6): 555-561 [Shao YF, Ma J, Chen X. Rice seedling substrate produced by coal gangue [J]. J Agric Resour Environ, 2017 (6): 555-561]
3. 李子能, 肖日辛. 蔬菜工厂化育苗基质及其研究进展[J]. 应用生态学报, 2012 (6): 58-59 [Li ZN, Xiao RX. Vegetable seedling substrates and their research progress [J]. Chin J Appl Ecol, 2012 (6): 58-59]
4. 崔薇薇. 植物根际促生菌的研究进展[J]. 辽宁农业科学, 2010 (2): 35-39 [Cui WW. Research advance on plant growth-promoting rhizobacteria [J]. Liaoning Agric Sci, 2010 (2): 35-39]
5. 张杨, 王甜甜, 孙玉涵, 胡官墨, 李荣, 俞萍, 沈其荣. 西瓜根际促生菌筛选及生物育苗基质研制[J]. 土壤学报, 2017, 54 (3): 703-712 [Zhang Y, Wang TT, Sun YH, Hu GM, Li R, Yu P, Shen QR. Screening of plant growth-promoting rhizobacteria from watermelon and development of bio-nursery substrates [J]. Acta Pedol Sin, 2017, 54 (3): 703-712]
6. Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J]. Microbiol Res, 2008, 163 (2): 173-181
7. 张杨, 文春燕, 赵买琼, 张苗, 高琦, 李荣, 沈其荣. 辣椒根际促生菌的分离筛选及生物育苗基质研制[J]. 南京农业大学学报, 2015, 38 (6): 950-957 [Zhang Y, Wen CY, Zhao MQ, Zhang M, Gao Q, Li R, Shen QR. Isolation of plant growth promoting rhizobacteria from pepper and development of bio-nursery substrates [J]. J Nanjing Agric Univ, 2015, 38 (6): 950-957]
8. Han JG, Sun L, Dong XZ, Cai ZQ, Sun XL, Yang HL, Wang YS, Song W. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens [J]. Syst Appl Microbiol, 2005, 28: 66-76
9. Zaidi S, Usmani S, Singh BR, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea [J]. Chemosphere, 2006, 64: 991-997
10. Karlidag H, Esitken A, Turan M, Sahin F. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple [J]. Sci Horticult, 2007, 114: 16-20
11. Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt [J]. BioControl, 2010, 55: 673-683
12. 刘东岳, 李敏, 孙文献, 刘润进. 抗黄瓜枯萎病丛枝菌根真菌与根围促生细菌组合菌剂的筛选[J]. 植物病理学报, 2016, 46 (6): 821-832 [Liu DY, Li M, Sun WX, Liu RJ. Selection of combinations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria against cucumber Fusarium wilt disease [J]. Acta Phytopathol Sin, 2016, 46 (6): 821-832]
13. Cao Y, Ling N, Yang XM, Chen LH, Shen QR. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biol Fertil Soils, 2011, 47 (5): 495-506
14. 巩子毓, 高旭, 黄炎, 李荣, 王东升, 沈其荣. 连续施用生物有机肥提高设施黄瓜产量和品质的研究[J]. 南京农业大学学报, 2016, 39 (5): 777-783 [Gong ZY, Gao X, Huang Y, Li R, Wang DS, Shen QR. Research on continuous application of bio-organic fertilizer for improving greenhouse cucumber yield and quality [J]. J Nanjing Agric Univ, 2016, 39 (5): 777-783]
15. 赵斌, 何绍江. 微生物学实验[M]. 北京: 科学出版社, 2002 [Zhao B, He SJ. Microbiology Experiment [M]. Beijing: Science Press, 2002]
16. 韦巧婕, 郑新艳, 邓开英, 王小慧, 高雪莲, 沈其荣, 沈标. 黄瓜枯萎病拮抗菌的筛选鉴定及其生物防效[J]. 南京农业大学学报, 2013 (1): 40-46 [Wei QJ, Zheng XY, Deng KY, Wang XH, Gao XL, Shen QR, Shen B. Screening and identification of antagonistic Bacillus vallismortis B against cucumber Fusarium wilt and its biological effect [J]. J Nanjing Agric Univ, 2013 (1): 40-46]
17. 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 [Bao SD. Analysis of Soil Agronomization [M]. Beijing: China Agriculture Publishing House, 2000]
18. Zhang SS, Raza W, Yang XM, Huang QW, Xu YC, Liu XH, Ran W, Shen QR. Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer [J]. Biol Fertil Soils, 2008, 44: 1073-1080
19. Komada H. Development of selective medium for quantitative isolation of Fusarium oxysporum from natural soil [J]. Rev Plant Prot Res, 1975, 8: 114-124
20. 张苗. 含Bacillus amyloliquefaciens SQR9的育苗基质和生物有机肥的研制及其应用[D]. 南京: 南京农业大学, 2014 [Zhang M. The development and application of bio-soilless medlum and bio-organic fertilizer containing Bacillus amyloliouefaciens SQR9 [D]. Nanjing: Nanjing Agricultural University, 2014]
21. 文春燕, 高琦, 张杨, 李荣, 沈其荣. 含PGPR菌株LZ-8生物育苗基质的研制与促生效应研究[J]. 土壤, 2016, 48 (2): 414-417 [Wen CY, Gao Q, Zhang Y, Li R, Shen QR. Development of biological matrix produced by PGPR strain LZ-8 and analysis for its growth promoting effect [J]. Soils, 2016, 48 (2): 414-417]
22. Liu HJ, Xiong W, Zhang RF, Han XN, Wang DS, Li R, Shen QR. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora [J]. Plant Soil, 2018, 423: 229-240
23. 袁先福, 孙玉菡, 朱成之, 朱虹, 王帅, 李荣, 沈其荣, 阮云泽. 轮作联用生物有机肥促进香蕉生长[J]. 应用与环境生物学报, 2018, 24 (1): 60-67 [Yuan XF, Sun YH, Zhu CZ, Zhu H, Wang S, Li R, Shen QR, Ruan YZ. Rotation combining with bio-organic fertilizer application enhanced banana growth in soil from banana monoculture orchard [J]. Chin J Appl Environ Biol, 2018, 24 (1): 60-67]
24. 杨玉新, 王纯立, 谢志刚, 王晓红. 微生物肥对土壤微生物种群数量的影响[J]. 新疆农业科学, 2008 (S1): 169-171 [Yang YX, Wang CL, Xie ZG, Wang XH. The Influense of the microbial fertilizer on microbial population density in soil [J]. Xinjiang Agric Sci, 2008 (S1): 169-171]
25. Minuto A, Spadaro D, Garibaldi A, Gullino ML. Control of soil borne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization [J]. Crop Prot, 2006, 25 (5): 468-475
26. 叶旭红, 林先贵, 王一明. 尖孢镰刀菌致病相关因子及其分子生物学研究进展[J]. 应用与环境生物学报, 2011, 17 (5): 759-762 [Ye XH, Lin XG, Wang YM. Progress in research on pathogenic factors and related molecular biology of Fusarium oxysporum [J]. Chin J Appl Environ Biol, 2011, 17 (5): 759-762]
27. Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY. Incidence of Fusarium wilt in Cucumis sativus L. is promrted by cinnamic acid, an autotoxin in root exudates [J]. Plant Soil, 2004 (1): 143-150
28. Qiu, MH, Zhang RF, Xue C, Zhang SS, Li SQ, Zhang N, Shen QR. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil [J]. Biol Fertil Soils, 2012, 48 (7): 807-816
29.

相似文献/References:

[1]尚庆茂,张志刚,董涛,等.油菜素内酯诱导黄瓜幼苗抗灰霉病研究[J].应用与环境生物学报,2007,13(05):630.
 SHANG Qingmao,et al..Resistance of Cucumber Seedlings to Botrytis cinerea Induced by Exogenous Brassinolide Treatment[J].Chinese Journal of Applied & Environmental Biology,2007,13(05):630.
[2]焦彦生,郭世荣 李娟 樊怀福 马蓉丽 黄保健**.钙调素拮抗剂W7对低氧胁迫下黄瓜幼苗根系生长和多胺动态变化的影响[J].应用与环境生物学报,2008,14(04):454.
[3]李霜,赵龙龙,李娜,等.莲草直胸跳甲幼虫在黄瓜和豇豆上的安全性表现*[J].应用与环境生物学报,2016,22(05):939.[doi:10.3724/SP.J.1145.2016.0128]
 LI Shuang,ZHAO Longlong,LI Na,et al.The security performance of Agasicles hygrophila larvae in Cucumis sativus and Vigna unguiculata*[J].Chinese Journal of Applied & Environmental Biology,2016,22(05):939.[doi:10.3724/SP.J.1145.2016.0128]
[4]杨珊珊,王茜,胡庭兴,等.3种农作物(玉米、黄瓜、豇豆)对银木凋落叶化感作用的生理响应[J].应用与环境生物学报,2018,24(02):292.[doi:10.19675/j.cnki.1006-687x.2017.05016]
 YANG Shanshan,WANG Qian,HU Tingxing,et al.Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops (corn, cucumber, and cowpea)[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):292.[doi:10.19675/j.cnki.1006-687x.2017.05016]

更新日期/Last Update: 2018-10-25