|本期目录/Table of Contents|

[1]林旭,何洁,冯守帅,等.硫氧化菌Halothiobacillus neapolitanus筛选、鉴定及其脱硫性能[J].应用与环境生物学报,2018,24(05):1107-1113.[doi:10.19675/j.cnki.1006-687x.2017.12021]
 LIN Xu,HE Jie,FENG Shoushuai**,et al.Isolation, identification, and biodesulfurization performance characteristics of Halothiobacillus neapolitanus[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1107-1113.[doi:10.19675/j.cnki.1006-687x.2017.12021]
点击复制

硫氧化菌Halothiobacillus neapolitanus筛选、鉴定及其脱硫性能()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1107-1113
栏目:
研究论文
出版日期:
2018-10-25

文章信息/Info

Title:
Isolation, identification, and biodesulfurization performance characteristics of Halothiobacillus neapolitanus
作者:
林旭何洁冯守帅杨海麟黄兴吴泉钱顾利星
1江南大学生物工程学院,教育部工业微生物技术重点实验室 无锡 214122 2无锡市城市环境卫生有限公司 无锡 214122
Author(s):
LIN Xu1 HE Jie1 FENG Shoushuai1** YANG Hailing1** HUAGN Xing2 WU Quanqian2 & GU Lixing2
1 Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China 2 Wuxi City Environmental Sanitation Co. Ltd, Wuxi, 214122, China
关键词:
Halothiobacillus neapolitanus内循环气升式反应器生物脱硫耐受性
Keywords:
Halothiobacillus neapolitanus internal airlift loop reactor biodesulfurization tolerance
分类号:
X172
DOI:
10.19675/j.cnki.1006-687x.2017.12021
摘要:
硫氧化菌是生物脱硫的关键因素,因此筛选耐受性强、脱硫效率高的菌株具有重要意义. 以硫代硫酸钠为能源底物,从无锡市某污水处理厂硝化污泥中分离到一株硫氧化菌株,通过菌落形态、TEM电镜观察,并结合16S rRNA测序以及系统进化树分类等分子生物学分析,鉴定该菌为那不勒斯硫杆菌(Halothiobacillus neapolitanus),命名为LJN1-3. 确定该菌的最适脱硫条件为pH 6.8,温度30 ℃,在该条件下,适量葡萄糖、蔗糖、乙醇等有机物以及Ni2+可刺激细胞生长,该菌对酸类和Mn2+、Pb2+、Zn2+、Cd2+等金属离子呈现一定耐受性. 该菌在内循环气升式反应器脱硫性能分析表明,其最大比生长速率和最大比消耗速率分别为0.38/h和6.5 × 10-4 g/h,24 h内硫代硫酸钠消耗率达99%,此时单质硫浓度0.88 g/L,呈现较强的脱硫潜力. SEM分析形成的单质硫表面呈现粗糙、不规则的形貌. 本研究表明,H. neapolitanus LJN1-3硫代硫酸钠去除率高且具有较强的耐受能力,在生物脱硫等领域具有一定的应用价值. (图7 表1 参19)
Abstract:
Desulfurization bacteria are the key influencers of biodesulfurization, thus it is important to screen for strains that have a high tolerance and desulfurization efficiency. A sulfur oxidizing bacterial strain, LJN1-3, was isolated from industrial nitrification sludge using thiosulfate as the sole energy source. Based on colony morphology, TEM images, 16S rDNA sequences, and phylogenetic tree analysis, this strain was identified as Halothiobacillus neapolitanus. Under the optimal desulfurizing conditions (pH 6.8 and 30 ℃), cell growth was promoted by low-carbon organic compounds (glucose, sucrose, and ethanol) and Ni2+, while the strain presented high tolerance to acids and metal ions including Mn2+, Pb2+, Zn2+, and Cd2+. The desulfurization experiment was carried out in an internal airlift loop reactor. The maximum specific growth rate and consumption ratio of strain LJN1-3 reached 0.38/h and 6.5 × 10-4 g/h, respectively. After 24 h, the thiosulfate removal ratio and the yield of elemental sulfur reached 99% and 0.88 g/L, respectively. Furthermore, SEM observation of elemental sulfur showed a rough and irregular surface in case of granular sulfur. The results of this study demonstrated that the H. neapolitanus strain LJN1-3 has potential applications in biological desulfurization based on its high sodium thiosulfate removal ability and high tolerance to acids and metal ions.

参考文献/References:

1. Hao TW, Xiang PY, Mackey HR, Chi K, Lu H, Chui HK. A review of biological sulfate conversions in wastewater treatment [J]. Water Res, 2014, 65: 1-21
2. 肖莉凡, 董泰丽, 崔青青, 刘晓风, 袁月祥, 李东, 李志东, 代玉梅, 闫志英, 陈槐. 硝酸盐生物氧化沼气硫化氢及微生物群落结构[J]. 应用与环境生物学报, 2017, 23 (4): 707-713 [Xiao LF, Dong TL, Cui QQ, Liu XF, Yuan YX, Li D, Li ZD, Dai YM, Yan ZY, Chen K. Biological oxidation of hydrogen sulfide in biogas using nitrate and microbial community structure [J]. Chin J Appl Environ Biol, 2017, 23 (4): 707-713]
3. Martínez I, Mohamed M E-S, Santos V, García JL, García-Ochoa F, Díaz E. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria [J]. J Biotechnol, 2017, 262: 47-55
4. 徐瑛, 孙永明, 袁振宏, 孔晓英, 李连华. 生物燃气生物脱硫技术研究进展[J]. 应用与环境生物学报, 2014, 20 (2): 328-335 [Xu Y, Sun YM, Yuan ZH, Kong XY, Li LH. Review of biogas bio-desulfurization process [J]. Chin J Appl Environ Biol, 2014, 20 (2): 328-335]
5. Tang K, Baskaran V, Nemati M. Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries [J]. Biochem Eng J, 2009, 44 (1): 73-94
6. Staicu LC, Morin-Crini N, Crini G. Desulfurization: critical step towards enhanced selenium removal from industrial effluents [J]. Chemosphere, 2017, 172: 111-119
7. 冯守帅, 陈金才, 杨海麟. Halothiobacillus neapolitanus脱硫性能及限制性因素影响[J]. 环境工程学报, 2015, 9 (9): 4385-4390 [Feng SS, Chen JC, Yang HL. Desulfurization performance of Halothiobacillus neapolitanus and effects of restrictive factors [J]. J Environ Eng, 2015, 9 (9): 4385-4390]
8. Yang HL, Gao K, Feng SS, Zhang L, Wang W. Isolation of sulfide remover strain Thermithiobacillus tepidarius JNU-2, and scale-up bioreaction for sulfur regeneration [J]. Ann Microbiol, 2015, 65 (1): 553-563
9. 谭倩, 陈秀杰, 余涛,欧天成. 离子色谱法和铬酸钡分光光度法测定水中硫酸盐的比较[J]. 环境卫生学杂志, 2014, 4 (6): 603-606 [Tan Q, Chen XJ, Yu T, Ou TC. Comparison of ion chromatography and barium sulfate spectrophotometry for sulfate determination in water [J]. J Environ Hygiene, 2014, 4 (6): 603-606]
10. Pagella C, Silvestri P, De Faveri DM. Hydrogen sulphide removal with a biochemical process: the biological step [J]. Chem Biochem Eng Q, 1996, 10 (4): 165-174
11. Huang C, Li ZL, Chen F, Liu Q, Zhao YK, Gao LF, Chen C, Zhou JZ, Wang AJ. Efficient regulation of elemental sulfur recovery through optimizing working height of upflow anaerobic sludge blanket reactor during denitrifying sulfide removal process [J]. Bioresource Technol, 2016, 200: 1019-1023
12. Garrity G. Bergey’s Manual? of Systematic Bacteriology: Volume Two: The Proteobacteria, Part A Introductory Essays [M]. New York: Springer Science & Business Media, 2006
13. Nazari F, Kefayati ME, Raheb J. Isolation, identification, and characterization of a novel chemolithoautotrophic bacterium with high potential in biodesulfurization of natural or industrial gasses and biogas [J]. Energ Sources A, 2017: 1-7
14. Brasseur G, Levicán G, Bonnefoy V, Hlomes D, Jedlicki E, Meunier DL. Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans [J]. BBA-Bioenergetics, 2004, 1656 (2): 114-126
15. Veith A, Botelho HM, Kindinger F, Gomes CM, Kletzin A. The sulfur oxygenase reductase from the mesophilic bacterium Halothiobacillus neapolitanus is a highly active thermozyme [J]. J Bacteriol, 2012, 194 (3): 677-685
16. Vikromvarasiri N, Pisutpaisal N. Hydrogen sulfide removal in biotrickling filter system by Halothiobacillus neapolitanus [J]. Int J Hydrogen Energ, 2016, 41 (35): 15682-15687
17. Alexander B, Leach S, Ingledew WJ. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans [J]. Microbiology, 1987, 133 (5): 1171-1179
18. 杨娟, 谢翼飞, 李旭东, 陈瑜江, 赵玉萍. 一株耐盐硫氧化细菌的分离鉴定及脱硫机理[J]. 应用与环境生物学报, 2015, 21 (5): 819-823 [Yang J, Xie XF, Li XD, Chen YJ, Zhao YP. Isolation, identification and desulfurization mechanism of a sulfur-oxidizing bacterium with salt tolerance [J]. Chin J Appl Environ Biol, 2015, 21 (5): 819-823]
19. Kleinjan WE, Keizer A, Janssen AJ. Biologically produced sulfur [J]. Top Curr Chem, 2003, 230: 167-188

更新日期/Last Update: 2018-10-25