|本期目录/Table of Contents|

[1]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824-832.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):824-832.[doi:10.19675/j.cnki.1006-687x.2017.12027]
点击复制

铁观音茶树体胚发生及其内源激素变化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年04期
页码:
824-832
栏目:
研究论文
出版日期:
2018-08-20

文章信息/Info

Title:
Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’
作者:
郭玉琼黄道斌常笑君朱晨李小桢赖钟雄
1福建农林大学园艺学院 福州 350002 2福建农林大学园艺植物生物工程研究所 福州 350002
Author(s):
GUO Yuqiong1 HUANG Daobin12 CHANG Xiaojun12 ZHU Chen1 LI Xiaozhen1 & LAI Zhongxiong12**
1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
铁观音茶树体胚发生内源激素
Keywords:
Tieguanyin Camellia sinensis somatic embryogenesis endogenous hormones
分类号:
S571.1
DOI:
10.19675/j.cnki.1006-687x.2017.12027
摘要:
以乌龙茶品种铁观音茶树的未成熟胚为供试材料,建立高效的茶树体胚发生再生体系,同时采用高效液相色谱法(HPLC)分析茶树体胚发生过程中各个不同发育阶段的内源激素含量变化趋势. 结果显示,诱导茶树体胚发生的培养基为改良MS培养基+ 2 mg/L苄基腺嘌呤(BA)+ 0.2 mg/L吲哚丁酸(IBA)+ 800 mg/L甜菜碱,体胚增殖系统维持途径的培养基为改良MS培养基+ 3 mg/L 肉桂酸+ 20 g/L 蔗糖+ 10 g/L 山梨醇. 当3%蔗糖与2%山梨醇组合使用时,子叶形胚的诱导率明显提高. 将诱导产生的子叶形胚转接至添加5%蔗糖与5%聚二乙醇(PEG)的无激素MS培养基中,经过40 d左右培养,体胚能正常成熟. 成熟体胚接种在附加2 mg/L BA与0.1 mg/L IBA的MS培养基上可以萌发成苗. 在体胚发生早期,玉米素(ZT)和赤霉酸(GA3)含量均是先下降,在子叶形胚时期降至最低值,到体胎发育后期的成熟胚与萌发阶段呈明显上升趋势;脱落酸(ABA)含量由球形胚到子叶形胚阶段一直呈现下降趋势,到成熟胚阶段时,出现一个明显的峰值;球形胚中的吲哚乙酸(IAA)含量显著高于其他阶段,之后迅速降低,波动变化. ABA/IAA的比值先增大,然后减小;ABA/GA3的比值体胚发育前期维持在较高水平,到成熟萌发阶段下降;球形胚阶段IAA/ZT的比值高于其他各个阶段. 本研究表明茶树不同发育阶段胚胎的体胚诱导率不同,与生理状态及其内源激素动态变化有关;同时茶树中内源激素含量和比例在体细胞胚胎发育过程中有显著的变化,这种变化在不同胚胎发育阶段起着特定的调节作用. (图8 表13 参38)
Abstract:
In this study, the immature embryos of oolong tea cultivar ‘Tieguanyin’ were used to establish an efficient regeneration system of tea somatic embryogenesis. The high performance liquid chromatography (HPLC) method analyzed the trend changes in endogenous hormone content during different developmental stages of tea somatic embryogenesis. The results showed that the medium to induce somatic embryogenesis was modified MS medium supplemented with 2 mg/L benzylaminopurine (BA), 0.2 mg/L indole-3-butytric acid (IBA), and 800 mg/L betaine, and the medium for sustaining the somatic embryo proliferation system was modified MS medium supplemented with 3 mg/L cinnamic acid, 20 g/L sucrose, and 10 g/L sorbitol. The percentage of cotyledon embryos increased when 3% sucrose was used in combination with 2% sorbitol. The induced cotyledon embryos were transferred to the medium supplemented with 5% sucrose and 5% polyethylene glycol (PEG) without phytohormones, and the somatic embryos became mature after 40 d of culture. Mature embryos were induced to germinate and regenerate on the MS medium supplemented with 2 mg/L BA and 0.1 mg/L IBA. During the early somatic embryogenesis stage, the content of zeatin (ZT) and gibberellic acid (GA3) first decreased and reached the lowest value of the cotyledon embryo period, and the content of ZT showed a significant upward trend in the mature embryo and germination embryo period during the post-embryonic developmental stage. The content of abscisic acid (ABA) decreased from the globular embryos to the cotyledon embryos and reached a peak during the mature embryos stage. The content of indole-3-acetic acid (IAA) in the globular embryo was significantly higher than that in the other stages, and then decreased rapidly and showed small fluctuations. The ratio of ABA/IAA first increased and then decreased. During the early somatic embryogenesis stage, the ratio of ABA/GA3 was maintained at a high level and decreased during the mature embryo and germination embryo period. The ratio of IAA/ZT in the globular embryos was higher than that in the other stages. The present study showed that the induction rate of embryos during different developmental stages was different, which was related to the physiological state and dynamics of the endogenous hormones in the tea cultivar ‘Tieguanyin.’ In addition, the content and proportion of endogenous hormones changed significantly during the development of somatic embryos. These changes play a specific regulatory role during different stages of embryonic development in the tea plant.

参考文献/References:

1 杨素娟, 王玉书, 王立. 茶树未成熟胚培养中根的诱导及形态[J]. 中国茶叶, 1989 (2): 14-15 [Yang SJ, Wang YS, Wang L. Induction and morphology of roots in immature wmbryo cultured in Camellia sinensis [J]. Chin Tea, 1989, (2): 14-15]
2 Kato M. Somatic embryogenesis from immature leaves of in vitro, grown tea shoots [J]. Plant Cell Rep, 1996, 15 (12): 920-923
3 刘德华, 周带娣, 陈庆余. 茶树体细胞畸形胚的发生和利用[J]. 作物学报, 1999, 25 (4): 513-517 [Liu DH, Zhou DD, Chen QY. Oceurrene and utilization of abnormal embryosin tea plant culture [J]. Acta Agron Sin, 1999, 25 (4): 513-517]
4 Mondal TK, Bhattacharya A, Ahuja PS, Chand PK. Transgenic tea [Camellia sinensis, (L.) O. Kuntze cv. Kangra Jat] plants obtained by agrobacterium-mediated transformation of somatic embryos [J]. Plant Cell Rep, 2001, 20 (8): 712-720
5 周山勇. 苍耳遗传结构的ISSR分析与茶树体胚发生研究[D]. 福州: 福建农林大学, 2007 [Zhou SY. ISSR Analysis of the genetic structure of xanthium in China and somatic embryogenesis in Camellia sinensis [D]. Fuzhou: Fujian Agriculture and Forestry University, 2007]
6 李晓东. 茶树体细胞胚发生的影响因素及超微结构和几种内含物质变化的研究[D]. 泰安: 山东农业大学, 2010 [Li XD. Factors influencing on the somatic embryogenesis of tea, the ultrastructure and the study of several embedded substances [D]. Taian: Shandong Agricultural University, 2010]
7 许益娟. 茶树组织培养再生体系优化与遗传转化的研究[D]. 南京: 南京农业大学, 2012 [Xu YJ. Tea plant tissue culture techniques and bacteriostat selectionin genetic transformarion [D]. Nanjing: Nanjing Agricultural University, 2012]
8 田丽丽, 李娟, 张静, 刘建军, 王坤波, 黄建安, 刘仲华. 不同诱导条件对茶树体胚诱导及增殖的影响[J]. 分子植物育种, 2017, 15 (2): 669-671 [Tian LL, Li J, Zhang J, Liu JJ, Wang KB, Huang JA, Liu ZH. The effect on embryogenic induction and proliferation of Camellia sinensis in different inductive condition [J]. Mol Plant Breed, 2017, 15 (2): 669-671]
9 Mondal TK, Bhattacharya A, Ahuja PS. Induction of synchronous secondary somatic embryogenesis in Camellia sinensis (L.) O. Kuntze [J]. J Plant Physiol, 2001, 158 (7): 945-951
10 陈春玲. 龙眼体细胞胚胎发生机理的初步研究[D]. 福州: 福建农林大学, 2001 [Chen CL. A preliminary study on meehanism of somatic embryogenesis in longan [D]. Fuzhou: Fujian Agriculture and Forestry University, 2001]
11 Pérez JM, Cantero NE, Pérez AF, Le-Disquet I, Guivarc’h A, Cos-Terrer J. Relationship between endogenous hormonal content and somatic organogenesis in callus of peach (Prunus persica L. Batsch) cultivars and Prunus persica × Prunus dulcis rootstocks [J]. J Plant Physiol, 2014, 171 (8): 619-624
12 Grzyb M, Kalandyk A, Waligórski P, Miku?a A. The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb [J]. Plant Cell Tiss Org, 2017, 129 (3): 387-397
13 Zhou XH, Zheng RH, Liu GX, Xu Y, Zhou YW, Laux T, Zhen Y, Harding S, Shi JS, Chen JH. Desiccation treatment and endogenous IAA levels are key factors influencing high frequency somatic embryogenesis in Cunninghamia lanceolata (Lamb.) Hook [J]. Front Plant Sci, 2017, 8: 2054
14 张立军, 梁宗锁. 植物生理学[M]. 北京: 科学出版社, 2007: 205-237 [Zhang LJ, Liang ZS. Plant physiology [M]. Beijing: Science Press, 2007: 205-237]
15 Akula A, Akula C, Bateson M. Betaine, a novel candidate for rapid induction of somatic embryogenesis in tea (Camelia sinensis (L.) O. Kuntze) [J]. Plant Growth Regul, 2000, 30 (3): 241-246
16 Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review [J]. Plant Cell Rep, 2016, 35 (2): 255-287
17 Vasil V, Hildebrandt AC. Differentiation of tobacco plants from single, isolated cells in microcultures [J]. Science, 1965, 150 (3698): 889-892
18 黄健秋, 卫志明. 松属树种的组织培养和原生质体培养[J]. 植物学报, 1994, 11 (1): 34-42 [Huang JQ, Wei ZM. Tissue and protoplast culture of pinus species [J]. Bull Bot, 1994, 11 (1): 34-42]
19 张丽杰, 赵丽蒙, 陆秀君, 沈海龙. 水曲柳子叶和下胚轴愈伤组织和体胚的诱导[J]. 分子植物育种, 2015, 13 (7): 1645-1652 [Zhang LJ, Zhao LM, Lu XJ, Shen HL. Callus induction and somatic embryogenesis from zygotic cotyledons and hypocotyls of Fraxinus mandshurica Rupr [J]. Mol Plant Breed, 2015, 13 (7): 1645-1652]
20 Cheliak WM, Klimaszewska K. Genetic variation in somatic embryogenic response in open-polinated families of black spruce [J]. Theor Appl Genet, 1991, 82 (2): 185-190
21 Williams EG, Maheswaran G. Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group [J]. Ann Bot, 1986, 57 (4): 443-462
22 Mondal TK, Parathiraj S, Kumar PM. Micrografting: a technique to shorten the hardening time of micropropagated shoots of tea (Camellia sinensis (L) O. Kuntze) [J]. Sri Lanka J Tea Sci, 2005, 70 (1): 5-9
23 黄学林, 李筱菊. 高等植物组织离体培养的形态建成及其调控[M]. 北京: 科学出版社, 1995 [Huang XL, Li XJ. Tissues of higher plants built in vitro culture and morphological regulation [M]. Beijing: Science Press,1995]
24 王亚馥, 崔凯荣, 陈克明, 刘志学. 小麦幼胚培养中体细胞发生和植株再生[J]. 植物学报, 1992, 9 (S1): 29 [Wang YF, Cui KR, Chen KM, Liu ZX. Somatic cell formation and plant regeneration in wheat immature embryo culture [J]. Bull Bot, 1992, 9 (S1): 29]
25 邹积鑫, 潘登浪, 林位夫. 油棕体细胞胚的诱导和次生胚的增殖研究[J]. 热带农业科学, 2016, 36 (8): 26-30 [Zhou JX, Pan DL, Lin WF. Induction of somatic embryogenesis and regeneration of secondary embryogenesis of oil palm [J]. Chin J Trop Agric, 2016, 36 (8): 26-30]
26 胡玉玲, 姚小华, 任华东, 王开良, 龙伟. 普通油茶体胚再生体系研究[J]. 南京林业大学学报(自然科学版), 2014, 40 (6): 160-164 [Hu YL, Yao XH, Ren HD, Wang KL, Long W. Study on somatic embryogenesis regeneration system in Camellia oleifera [J]. J Nanjing For Univ (Nat Sci Ed), 2014, 40 (6): 160-164]
27 胡玉玲, 姚小华, 任华东, 王开良, 龙伟. ‘长林53号’油茶胚发育特征分析及体胚再生体系优化[J]. 西北植物学报, 2014, 34 (11): 2288-2295 [Hu YL, Yao XH, Ren HD, Wang KL, Long W. Optimization of ‘Changlin 53’ somatic embryogensis regeneration system and physiological and biochemical characteristics of explant [J]. Acta Bot Bor-Occid Sin, 2014, 34 (11): 2288-2295]
28 Merkle SA, Parrott WA, Flinn BS. Morphogenic aspects of somatic embryogenesis [M]//Thorpe TA. In Vitro Embryogenesis in Plants. Dordrecht: Kluwer Academic Publishers, 1995: 155-203
29 赖钟雄, 陈振光. 龙眼胚性愈伤组织的高频率体细胞胚胎发生[J]. 福建农业大学学报(自然科学版), 1997, 26 (3): 271-276 [Lai ZX, Chen ZG. Somatic embryogenesis of high frequency from longun embryog [J]. J Fujian Agric For Univ (Nat Sci Ed), 1997, 26 (3): 271-276]
30 郭勇, 崔堂兵, 谢秀祯. 植物细胞培养技术与应用[M]. 北京: 化学工业出版社, 2003 [Guo Y, Cui TB, Xie XZ. Plant Cell Culture Technology and Application [M]. Beijing: Chemical Industry Press, 2003]
31 林莉. 金花茶离体培养研究[D]. 福州: 福建农林大学, 2005 [Lin L. In vitro culture of Camellia nitidissima Chi [D]. Fuzhou: Fujian Agriculture and Forestry University, 2005]
32 Wang C, Liu Y, Li SS, Han GZ. Insights into the origin and evolution of the plant hormone signaling machinery [J]. Plant Physiol, 2015, 167 (3): 872-886
33 Rathore JS, Rai MK, Shekhawat NS. Induction of somatic embryogenesis in gum arabic tree [Acacia senegal (L.) Willd.] [J]. Physiol Mol Biol Plant, 2012, 18 (4): 387-392
34 Cangahuala-Inocente GC, Silveira V, Caprestano CA, Floh EI, Guerra MP. Dynamics of physiological and biochemical changes during somatic embryogenesis of Acca sellowiana [J]. In Vitro Cell Dev-Pl, 2014, 50 (2): 166-175
35 Rugini E, Silvestri C. Somatic embryogenesis in olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris) [J]. Methods Mol Biol, 2016, 1359: 341-349
36 Nolan KE, Song Y, Liao S, Saeed NA, Zhang X, Rose RJ. An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula [J]. PLoS ONE, 2014, 9: e99908
37 Guan Y, Li SG, Fan XF, Su ZH. Application of somatic embryogenesis in woody plants [J]. Front Plant Sci, 2016, 7: 938
38 Isah T. Induction of somatic embryogenesis in woody plants [J]. Acta Physiol Plant, 2016, 38 (5): 118

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[4]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[5]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[6]王海斌,**陈晓婷丁 力叶江华贾小丽孔祥海何海斌.福建省安溪县茶园土壤酸化对茶树产量及品质的影响*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,**,CHEN Xiaoting,et al.Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian province *[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2017.12008]
[7]张 玥 胡雲飞 王树茂 柯子星 高水练 林金科**.茶园年限对根际土壤真菌群落结构及多样性的影响*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.04011]
 ZHANG Yue,HU Yunfei,WANG Shumao,et al.Effect of the structure and diversity of fungal community in rhizosphere soil from different ages of tea garden *[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2018.04011]

更新日期/Last Update: 2018-08-25