|本期目录/Table of Contents|

[1]王敏强,吴沛鸿,沈益康,等.盐胁迫下接种丛枝菌根真菌对甜菊生长和氮磷吸收的影响[J].应用与环境生物学报,2018,24(05):960-966.[doi:10.19675/j.cnki.1006-687x.2017.12038]
 WANG Minqiang,WU Peihong,SHEN Yikang,et al.Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):960-966.[doi:10.19675/j.cnki.1006-687x.2017.12038]
点击复制

盐胁迫下接种丛枝菌根真菌对甜菊生长和氮磷吸收的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
960-966
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana
作者:
王敏强吴沛鸿沈益康宋垚彬吴爱平王艳红
1浙江农林大学省部共建亚热带森林培育国家重点实验室 杭州 3113002杭州师范大学生态系统保护与恢复杭州市重点实验室 杭州 3100363湖南农业大学生物与科学技术学院 长沙 410128
Author(s):
WANG Minqiang1 WU Peihong1 SHEN Yikang1 SONG Yaobin2 WU Aiping3 & WANG Yanhong1**
1 State Key Laboratory of Subtropical Silviculture, Zhejiang A﹠F University , Hangzhou 311300, China2 Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou 310036, China3 College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China
关键词:
甜菊盐胁迫AM真菌叶干重磷含量
Keywords:
Stevia rebaudiana salt stress AM fungus leaf dry weight phosphorus concentration
分类号:
Q948.122.3 : S431.16
DOI:
10.19675/j.cnki.1006-687x.2017.12038
摘要:
盐胁迫是普遍而严重的世界性环境问题,丛枝菌根(Abuscular mycorrhizal,AM)真菌被认为是提高植物抗盐性的有效的生物方法. 甜菊(Stevia rebaudiana)作为一种新兴的保健型糖源植物,分布范围较广. 通过设置盐胁迫(0 mmol/L和200 mmol/L)和接种AM真菌(未接种和接种摩西球囊霉)4种处理组合,解析AM真菌对甜菊抗盐性的作用机理. 结果发现,盐胁迫显著降低了甜菊的各部分鲜重和干重、基质pH值和菌根化结构形成的强度,但显著增加了植株的氮、磷含量. 在非盐胁迫下,接种AM真菌显著增加了植株各部分的鲜重和干重;而在高盐处理下,AM真菌的促进效应则不明显,这可能与高盐下AM真菌结构的形成和发育状况的显著降低有关. 此外,接种AM真菌显著增加了甜菊植株的磷含量尤其是在高盐胁迫下,且随着盐浓度的升高,甜菊的氮依赖性显著下降而磷依赖性显著升高,促进磷元素的吸收可能是AM真菌提高甜菊耐盐性的内在机理. 本研究表明,接种摩西球囊霉可显著增加非盐胁迫下甜菊的生物量,同时有利于高盐胁迫下甜菊植株磷元素的吸收,这可为甜菊的产业化经营和管理提供一定的理论依据. (图4 表2 参33)
Abstract:
Soil salinity is a common and serious environmental problem for plant growth in many parts of the world. Arbuscular mycorrhizal fungi (AMF) are thought of as bioameliorators that improve the soil salinity tolerance of plants. Stevia rebaudiana is broadly distributed in China, and is grown as a plant source of a new type of healthy alternative sweetener to sugar. However, few studies have been conducted to explore the role of AMF in the salinity tolerance of this plant. In this study, a greenhouse experiment was done with four treatment groups of this plant, composed of different combinations of salinity treatments (0 mmol/L and 200 mmol/L) and AMF treatments (inoculated with a sterilized AMF and with Glomus mosseae). The results showed that the treatment with the higher salinity significantly decreased the fresh weight, dry weight, substrate pH, and the percent of AMF structure in colonized root (m%) of S. rebaudiana, although salinity also significantly increased plant N and P concentrations. In the absence of salinity, AMF-inoculated plants had higher fresh and dry weights, while under salinity-stressed conditions the beneficial effects of the AMF were not evident (i.e. no difference from the non-inoculated plants was detected), which may have been due to significant decreases in the growth and activity of the AMF under severe salt stress. However, compared with the control plants AMF-inoculated plants had higher P concentrations, especially under saline conditions, and with increasing salinity the shoot mycorrhizal N response (MNR) significantly decreased while the shoot mycorrhizal P response (MPR) significantly increased. Obviously, the promotion of P accumulation by AMF colonization appears to be the mechanism underlying the increased salinity resistance of the AMF-inoculated plants. Therefore, it can be concluded that the accumulation of biomass in plants inoculated with G. mosseae will be promoted under non-saline conditions, while under saline conditions inoculated plants will acquire and accumulate more P. These findings provide theoretical guidance for the production and management of plants.

参考文献/References:

1 Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review [J]. Ann Bot, 2009, 104: 1263-1280
2 李焕勇, 杨秀艳, 唐晓倩, 张华新. 植物响应盐胁迫组学研究进展[J]. 西北植物学报, 2016, 36 (12): 2548-2557 [Li HY, Yang XY, Tang XQ, Zhang HX. Omics research progress of plants under salt stress [J]. Acta Bot Bor Occid Sin, 2016, 36 (12): 2548-2557]
3 张义飞, 王平, 毕琪, 张忠辉, 杨允菲. 不同强度盐胁迫下AM真菌对羊草生长的影响[J]. 生态学报, 2016, 36 (17): 5467-5476 [Zhang YF, Wang P, Bi Q, Zhang ZH, Yang YF. The effects of arbuscular mycorrhizal fungi on the growth of Leymus chinensis under saline stress of different intensities [J]. Acta Ecol Sin, 2016, 36 (17): 5467-5476]
4 杨海霞, 徐萌, 刘宁, 郭绍霞. 丛枝菌根真菌对两种草坪草耐盐性的影响[J]. 草业科学, 2014, 31 (7): 1261-1268 [Yang HX, Xu M, Liu N, Guo SX. Effects of arbuscular mycorrhizal fungi on salinity tolerance of two turfgrass [J]. Pratacult Sci, 2014, 31 (7): 1261-1268]
5 Evelin H, Giri B, Kapoor R. Contribution of Glomus Intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed trigonella foenum-graecum [J]. Mycorrhiza, 2012, 22: 203-217
6 Munns R. Genes and salt tolerance: bringing them together [J]. New Phytol, 2005, 167: 645-663
7 Smith SE, Read DJ. Mycorrhizal Symbiosis [M]. New York: Academic Press, 2008: 117-145
8 Heijden MGAVD, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature, 1998, 396: 69-72
9 陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41 (4): 97-105 [Chen LH, Lai J, Hu XW, Yang WQ, Zhang J, Wang XJ, Tan LJ. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in fe-males and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plant Ecol, 2017, 41 (4): 97-105]
10 陈笑莹, 宋凤斌, 朱先灿, 孙露莹, 马福, 刘胜群. 低温胁迫下丛枝菌根真菌对玉米幼苗形态、生长和光合的影响[J]. 华北农学报, 2014, 29 (S1): 155-161 [Chen XY, Song FB, Zhu XC, Sun LY, Ma F, Liu SQ. Effect of arbuscular mycorrhizal fungus on morphology, growth and photosynthetic characteristics in maize seedlings under low temperature stress [J]. Acta Agric Bor Sin, 2014, 29 (S1): 155-161]
11 Zhu XC, Song FB, Liu SQ, Liu TD. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress [J]. Plant Soil, 2011, 346 (1-2): 189-199
12 耿春女, 李培军, 陈素华, 肖宝英, 张海荣, 韩桂云, 张春桂. 不同AM真菌对三叶草耐油性的影响[J]. 应用与环境生物学报, 2002, 8 (6): 648-652 [Di CN, Li PJ, Chen SH, Xiao BY, Zhang HR, Han GY, Zhang CG. Effects of different arbuscular mycorrhizal fungi on oil tolerance of Trifolium Subterraneum L. [J]. Chin J Appl Environ Biol, 2002, 8 (6): 648-652]
13 杨海霞, 郭绍霞, 刘润进. 盐碱地生境中丛枝菌根真菌多样性与功能变化特征[J]. 应用生态学报, 2015, 26 (1): 311-320 [Yang HX, Guo SX, Liu RJ. Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land [J]. Chin J Appl Ecol, 2015, 26 (1): 311-320]
14 冯固, 白灯莎, 杨茂秋, 李晓林, 张福锁. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响[J]. 作物学报, 2000, 26 (6): 743-750 [Feng G, Bai DS, Yang MQ, Li XL, Zhang FS. Influence of inoculating arbuscular mycorhizal fungi on growth and salinity tolerance parameters of maize plants [J]. Acta Agron Sin, 2000, 26 (6): 743-750]
15 Wang FY, Liu RJ, Lin XG, Zhou JM. Arbuscular mycorrhizal status of wild plants in salinealkaline soils of the yellow river delta [J]. Mycorrhiza, 2004, 14: 133-137
16 Shah MA. Mycorrhizas: Novel Dimensions in the Changing World [M]. New Delhi: Springer, 2014
17 Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes [J]. Environ Microbiol, 2009, 11 (6): 1548-1561
18 Hirrel MC, Gerdmann JW. Improved growth of onion and bell pepper in saline soils by two vesicular arbuscualr mycorrhizal fungi [J]. Soil Sci Soc Am J, 1980, 44: 654-655
19 Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress [J]. Mycorrhiza, 2014, 24: 611-625
20 Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M. Mineral uptake of mycorrhizal wheat (Triticum aestivum L.) under salinity stress [J]. Commun Soil Sci Plan, 2015, 46 (3): 343-357
21 Alkaraki GN. Growth of mycorrhizal tomato and mineral acquisition under salt stress [J]. Mycorrhiza, 2000, 10: 51-54
22 Poss JA, Pond E, Menge JA, Jarrell WM. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate [J]. Plant Soil, 1985, 88: 307-319
23 Wilson GW, Hartnett DC. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie [J]. Am J Bot, 1998, 85: 1732-1738
24 绳仁立. 甜菊 (Stevia rebaudiana Bertoni) 耐盐碱研究[D]. 南京: 南京农业大学, 2009 [Sheng RL. Study on salt and alkali tolerance of stevia rebaudiana bertoni [D]. Nanjing: Nanjing Agriculture University, 2009]
25 董海涛, 孙宏义. NaCl胁迫对甜叶菊移栽苗生理生态特性的影响[J]. 冰川冻土, 2015, 37 (2): 538-544 [Dong HT, Shun HY. Effects of NaCl stress on ecophysiological characteristics of transplanting seedings of Stevia rebaudiana Bertoni [J]. J Glaciol Geocryol, 2015, 37 (2): 538-544]
26 刘星宇, 王艳红, 许益燃. 模拟酸沉降下汞胁迫对香樟幼苗生理生态特性的影响[J]. 生态学杂志, 2017, 36 (3): 670-675 [Liu XY, Wang YH, Xu YR. Effects of Hg stress on the physio-ecological characteristics of Cinnamomum camphora seedlings under simulated acid rain [J]. Chin J Ecol, 2017, 36 (3): 670-675]
27 赵金莉, 贺学礼. AM真菌对油蒿生长和抗旱性的影响[J]. 华北农学报, 2007, 22 (5): 184-188 [Zhao JL, He XL. Effect of AM fungi on the growth and drought resistance of Artemisia ordosica [J]. Acta Agric Boreali Sin, 2007, 22 (5): 184-188]
28 Phillips J, Hayman D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Trans Brit Mycol Soc, 1970, 55: 18-29
29 Trouvelot A, Kough JL, Gianinazzipearson. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une significantion fonctionnelle [C]. Physiological & Genetical Aspects of Mycorrhizae: Europe Symposium on Mycorrhizae, 1986: 217-221
30 冯海艳, 冯固, 王敬国, 李晓林. 植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控[J]. 菌物系统, 2003, 22 (4): 589-598 [Feng HY, Feng G, Wang JG, Li XL. Regulation of P status in host plant on alkaline phosphatase (ALP) activity in intraradical hyphae and development of extraradical hyphae of AM fungi [J]. Mycosystema, 2003, 22 (4): 589-598]
31 张可可, 蒋德明, 余海滨, 周全来, 韦云. 接种菌根菌剂对科尔沁沙地4种造林幼苗生长特性的影响[J]. 生态学杂志, 2017, 36 (7): 1791-1800 [Zhang KK, Jiang DM, Yu HB, Zhou QL, Wei Y. Impacts of mycorrhizal fungi inoculum on growth characteristics of four kinds of afforest-ation seedlings in Horqin sandy land, China [J]. Chin J Ecol, 2017, 36 (7): 1791-1800
32 姜伟, 崔世茂, 王勇, 曹继龙, 王建国. KNO3、K2SO4及其混盐胁迫对辣椒幼苗叶片N、P、K含量的影响[J]. 华北农学报, 2012, 27 (5): 221-226 [Jiang W, Cui SM, Wang Y, Cao JL, Wang JG. Effects of KNO3, K2SO4 and their mixed salt stress on N, P, K content in leaf of pepper seedling [J]. Acta Agric Bor Sin, 2012, 27 (5): 218-223]
33 贺忠群, 贺超兴. 盐渍条件下丛枝菌根真菌对番茄营养吸收及离子毒害的影响[J]. 华北农学报, 2013, 28 (1): 181-186 [He ZQ, He CX. Effect of arbuscular mycorrhizal fungi on nutrition absorbing and ion damage in tomato under salt stress [J]. Acta Agric Bor Sin, 2013, 28 (1): 181-186]

相似文献/References:

[1]郭英,刘栋,赵蕾.生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J].应用与环境生物学报,2009,15(01):39.[doi:10.3724/SP.J.1145.2009.00039]
 GUO Ying,LIU Dong,ZHAO Lei.Effect of Extracellular Phytase Produced by Bacillus subtilis T2 on Salt Tolerance of Wheat Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):39.[doi:10.3724/SP.J.1145.2009.00039]
[2]王淑智,李利,张道勇,等.NaCl与Cd对小球藻光系统Ⅱ(PSⅡ)活性的影响[J].应用与环境生物学报,2011,17(06):839.[doi:10.3724/SP.J.1145.2011.00839]
 WANG Shuzhi,LI Li,ZHANG Daoyong,et al.Effects of NaCl and Cd on PhotosystemⅡ (PSⅡ) Activity of Chlorella pyrenoidosa[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):839.[doi:10.3724/SP.J.1145.2011.00839]
[3]魏显珍,王淑智,潘响亮.盐胁迫对喜钙念珠藻生理活性的影响及钙的胁迫缓解效应[J].应用与环境生物学报,2013,19(04):655.[doi:10.3724/SP.J.1145.2013.00655]
 WEI Xianzhen,WANG Shuzhi,PAN Xiangliang.Alleviating Effect of Calcium on Salt-stress-induced Inhibition of Photosynthetic Activities in Nostoc calcicola Breb.[J].Chinese Journal of Applied & Environmental Biology,2013,19(05):655.[doi:10.3724/SP.J.1145.2013.00655]
[4]陈娇,姜玉松,张义正,等.甘薯LEA2基因的克隆与表达分析[J].应用与环境生物学报,2014,20(02):204.[doi:10.3724/SP.J.1145.2014.00204]
 CHEN Jiao,JIANG Yusong,ZHANG Yizheng,et al.Cloning and expression analyses of LEA2 gene from Ipomoea batatas[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):204.[doi:10.3724/SP.J.1145.2014.00204]
[5]彭晓珏,刘瑢,阳菁,等.Gateway技术构建盐和干旱胁迫下水稻根系混合cDNA文库及其质量鉴定[J].应用与环境生物学报,2014,20(02):291.[doi:10.3724/SP.J.1145.2014.00291]
 PENG Xiaojue,LIU Rong,YANG Jing,et al.Construction and identification of a mixed cDNA library of rice roots under salt and drought stress using Gateway technology[J].Chinese Journal of Applied & Environmental Biology,2014,20(05):291.[doi:10.3724/SP.J.1145.2014.00291]
[6]陈飞,王淑智,潘响亮.盐胁迫对蛋白核小球藻光系统I(PSI)和光系统II(PSII)的影响同步监测分析[J].应用与环境生物学报,2015,21(04):695.[doi:10.3724/SP.J.1145.2014.10028]
 CHEN Fei,WANG Shuzhi,PAN Xiangliang.Synchronous analysis of the effects of NaCl stress on photosystems I (PSI) and II (PSII) activities of Chlorella pyrenoidosa[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):695.[doi:10.3724/SP.J.1145.2014.10028]
[7]许天委,张晓楠,刘煜,等.海马齿小热激蛋白SpHSP18.1基因的克隆及盐胁迫表达分析[J].应用与环境生物学报,2015,21(05):882.[doi:10.3724/SP.J.1145.2015.04062]
 XU Tianwei,ZHANG Xiaonan,LIU Yu,et al.Molecular clone of Sesuvium portulacastrum small heat shock protein SpHSP18.1 gene and its expression profiling under salt stress[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):882.[doi:10.3724/SP.J.1145.2015.04062]
[8]张丽娟,李红兵,孙振玫,等.过表达IbOr基因甘薯增强抗盐性的生理机制[J].应用与环境生物学报,2017,23(01):54.[doi: 10.3724/SP.J.1145.2016.05005]
 zhang lijuan,Li hongbing**,et al.Physiological mechanism of enhanced salt stress tolerance in sweet potato (Ipomoes batats L.) with overexpression of IbOr gene[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):54.[doi: 10.3724/SP.J.1145.2016.05005]
[9]陈永富,王阳,冯倩,等.异源表达胡杨PeCPD基因提高烟草对盐、高氮和干旱胁迫的抗性[J].应用与环境生物学报,2017,23(2):225.[doi:10.3724/SP.J.1145.2016.10019]
 CHEN Yongfu,WANG Yang,FENG Qian,et al.Heterologous overexpression of Populus euphratica CPD improved tobacco resistance to salt, high nitrogen, and drought stress[J].Chinese Journal of Applied & Environmental Biology,2017,23(05):225.[doi:10.3724/SP.J.1145.2016.10019]
[10]孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(03):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]
 SUN Dezhi**,HAN Xiaori,PENG Jing,et al.Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):457.[doi:10.19675/j.cnki.1006-687x.2017.08019]

更新日期/Last Update: 2018-10-25