|本期目录/Table of Contents|

 LI Shasha,et al..Response of the leaf area growth of Phragmites australis and Spartina alterniflora to elevated temperatures at the Yangtze River estuary[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1247-1253.[doi:10.19675/j.cnki.1006-687x.2018.01010]





Response of the leaf area growth of Phragmites australis and Spartina alterniflora to elevated temperatures at the Yangtze River estuary
李沙沙 樊同 张超 朱红雨 周婷南 吴悦琦 贺贵书 王开运 李海禹 毕星
1华东师范大学生态环境学院 上海 200241 2上海市城市化生态过程与生态恢复重点实验室 上海 200241 3华东师范大学地理科学学院 上海 200241 4华东师范大学地理信息科学教育部重点实验室 上海 200241
LI Shasha et al.
1 College of Ecology and Environment, East China Normal University, Shanghai 200241, China 2 Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200241, China 3 College of Geography, East China Normal University, Shanghai 200241, China 4 Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200241, China
site warming Spartina alterniflora Phragmites australis growth of leaf area open top chamber
采用开顶式生长室(Open top chambers,OTCs)模拟立地增温的方法(4个OTC,4个对照),研究芦苇(Phragmites australis)和互花米草(Spartina alterniflora)实生苗顶叶面积、单株总叶面积和叶面积指数(LAI)对增温(OTC内空气年平均气温增加了2.00 ± 0.17 ℃)的响应. 结果显示:(1)与对照相比, 一年生长后芦苇和互花米草LAI分别显著增加. 芦苇LAI于9月份达到峰值,增加了5.40%;而互花米草呈现持续增加趋势,于10月份达到峰值,增加了7.00%(P < 0.05). (2)芦苇顶叶面积于8月份达到峰值,增加了12.94%;互花米草于9月份达到峰值,增加了23.96%. 同时增温使互花米草顶叶面积伸展延后3 d. (3)芦苇单株总叶面积于9月份达到峰值,增加了9.36%;而互花米草于10月份达到峰值,与对照相比,增加了20.26%. 上述结果表明在未来大气增温条件下,互花米草叶生长对大气增温的响应比芦苇更加敏感. (图7 表2 参25)
To investigate the response of plant growth in the Yangtze Estuary wetland ecosystem to warming, we use open top chambers (OTCs) to simulate site warming (4 OTCs and 4 controls), monitoring the area of the top leaf, the total leaf area, and the leaf area index of Phragmites australis and Spartina alterniflora under higher temperatures (the average annual air temperature in OTC increased by 2.00 ± 0.17 ℃). The results showed that: (1) compared with the control, the leaf area index of P. australis and S. alterniflora significantly increased after one year of growth. The leaf area index of P. australis peaked in September, increasing of about 5.40%; while that of S. alterniflora continued to increase, reaching its peak in October, reaching an increment of about 7.00% (P < 0.05). (2) The area of ??the top leaf of P. australis reached its peak in August, and increased about 12.94%. S. alterniflora peaked in September with an increase of 23.96%. The higher temperature delayed the spread of the top leaf area of ??S. alterniflora by about 3 days. 3) The total leaf area of P. australis reached its peak in September, and increased by 9.36%; while S. alterniflora peaked in October, and increased by 20.26% compared to the control. These results show that leaf growth of S. alterniflora will be more sensitive to future increasing atmospheric temperature conditions than that of P. australis.


1. IPCC. Climate Change 2013: the physical science basis [R]. The Fifth Assessment Report of Working Group. Cambridge: Cambridge University Press, 2013
2. 冯胜辉, 龚道溢, 张自银, 何学兆, 郭栋, 雷杨娜. 近50年来中国冬季风寒温度的变化[J]. 地理学报, 2009, 64 (9): 1071-1082 [Feng SH, Gong DY, Zhang ZY, He XZ, Guo D, Lei YN. Wind-Chill temperature changes in winter over China during the last 50 years [J]. Acta Geogr Sin, 2009, 64 (9): 1071-1082]
3. 杨金艳, 杨万勤, 王开运, 孙建平. 木本植物对CO2浓度和温度升高的相互作用的响应[J]. 植物生态学报, 2003, 27 (3): 304-310 [Yang JY, Yang WQ, Wang KY, Sun JP. Woody plants respond to interaction between elevated CO2 and increased temperature [J]. Acta Phy Sin, 2003, 27 (3): 304-310]
4. 张同. 昼夜不同增温对水稻生长发育及产量和品质的影响研究[D]. 武汉: 华中农业大学, 2016 [Zhang T. Effects of asymmetric warming on growth, yield and quality rice [D]. Wuhan: Huazhong Agricultural University, 2016]
5. Gooding MJ, Jpre D, France J, Jones SA. Green leaf area decline of wheat flag leaves: the influence of fungicides and relationships with mean grain weight and grain yield [J]. Ann Appl Biol, 2015, 136 (1): 77-84
6. 孟伟庆, 吴绽蕾, 王中良. 湿地生态系统碳汇与碳源过程的控制因子和临界条件[J]. 生态环境学报, 2011, 20 (8): 1359-1366 [Meng WQ, Wu ZL, Wang ZL. Control factors and critical conditions between carbon sinking and sourcing of wetland ecosystem [J]. Ecol Environ Sci, 2011, 28 (8): 1359-1366]
7. 陈宇琪, 杨劼, 王平平, 宋炳煜. 模拟增温对C3/C4植物种子出苗和幼苗生长的影响[J]. 中国农业气象, 2014, 35 (4): 395-402 [Chen YQ, Yang J, Wang PP, Song BY. Effects of simulated warming on seed emergence and seedling growth of C3/C4 plants [J]. Chin J Agrometeorol, 2014, 35 (4): 395-402]
8. 石冰. 崇明东滩围垦芦苇生长和繁殖对大气温度升高的响应[D]. 上海: 华东师范大学, 2010 [Shi B. Effects of atmospheric elevated temperature on the growth, and reproduction of reclamation Phragmites australis in east beach of Chongming island [D]. Shanghai: East China Normal University, 2010]
9. 翁恩生, 周广胜. 用于全球变化研究的中国植物功能型划分[J]. 植物生态学报, 2005, 29 (1): 81-97 [Weng ES, Zhou GS. Defining plant functional types in China for global change studies [J]. Acta Phytoecol Sin, 2005, 29 (1): 81-97]
10. Pvv P, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK. Impact of nighttime temperature on physiology and growth of spring Wheat [J]. Corp Sci, 2008, 48 (6): 2372-2380
11. Zhang ZH, Zhao MX, Lu HY, Faiia M. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau [J]. Earth Planet Sci Lett, 2003, 214 (3): 467-481
12. 聂志刚, 李广. 光照和温度对旱地小麦叶面积指数的影响[J]. 干旱区研究, 2013, 30 (5): 894-898 [Nie ZG, Li G. Effects of light and temperature on leaf area index of wheat in dryland [J]. Arid Zone Res, 2013, 30 (5): 894-898]
13. 景军. 亚热带常绿阔叶林食叶昆虫和寄主植物物候同步性及其对气候变化的响应[D]. 上海: 华东师范大学, 2015 [Jing J. Responses of synchrony between leaf-feeding insects and host plants in subtropical evergreen broad-leaved forests to climate change [D]. Shanghai: East China Normal University, 2015]
14. Prakash P, Kumari A, Singh DV, Pandey R, Sharmanatu P, Poonam G. Starch synthase activity and grain growth in wheat cultivars under elevated temperature: a comparison of responses [J]. Indian J Plant Physics, 2009, 14 (4): 364-369
15. Adavi Z, Moradi R, Saeidnejad AH, Tadayon MR, Mansouri H. Assessment of potato response to climate change and adaptation strategies [J]. Sci Horticult, 2018, 228 (2018): 91-102
16. Zhong QC, Gong JN, Wang KY, Zhang C. Effect of 3-year air warming on growth of two perennial grasses (Phragmites austalis and Imperata cylindrica) in a coastal salt marsh reclaimed for agriculture [J]. Aquat B, 2014, 1 (1): 18-26
17. 耿婷, 陈金, 张卫建, 陈长青. 全天增温对不同年代冬小麦品种生长发育及产量的影响[J]. 应用生态学报, 2014, 25 (5): 1357-1365 [Geng T, Chen J, Zhang WJ, Chen CQ. Effects of all-day warming on growth, development and yield of winter wheat cultivars bred in different periods [J]. Chin J Appl Ecol, 2014, 25 (5): 1357-1365]
18. 张祎玮, 娄运生, 朱怀卫, 肇思迪. 夜间增温对水稻生长、生理特性及产量构成的影响[J]. 中国农业气象, 2017, 38 (2): 88-95 [Zhang YW, Lou YS, Zhu HW, Zhao SD. Impacts of night warming on rice growth, physiological properties and yield components [J]. Chin J Agrometeorol, 2017, 38 (2): 88-95]
19. Ge ZM, Guo HQ, Zhao B, Zhang LQ. Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: insights from leaf to ecosystem. J Geophys Res Biogeosci, 2015, 120 (1): 169-186
20. 袁月. 崇明东滩湿地芦苇与互花米草种群间关系格局与影响因素研究[D]. 上海: 华东师范大学, 2013 [Yuan Y. Interspecific interactions of Spartina alterniflora and Phragmites australis and related factors in Chongming Dongtan wetland [D]. Shanghai: East China Normal University, 2013]
21. Gan XJ, Cai YT, Choi CY, Chen JK, Li B. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuarine Coastal Shelf Sci, 2009, 83 (2): 211-218
22. Li X, Zhao M, Li CF, Ge JZ. Dynamic Characteristics of leaf area index in maize and its model establishment based on accumulated temperature [J]. Acta Agric Sin, 2011, 37 (2): 321-330
23. Gorai M, Ennajeh M, Khemira H, Neffati M. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Phytecol Plant, 2011, 33 (3): 963-971
24. Zhong QC, Du Q, Gong JN, Zhang C, Wang KY. Effects of in situ experimental air warming on the soil respiration in a coastal salt marsh reclaimed for agriculture. Plant Soil, 2013, 371 (1-2):487–502
25. 李荣平, 刘晓梅, 周广胜. 盘锦湿地芦苇物候特征及其对气候变化的响应[J]. 气象与环境学报, 2006, 22 (4): 30-34 [Li RP, Liu XM, Zhou GS. The characteristics of Phragmites phenology in Panjin wetland and its responses to climatic change [J]. J Meteorol Environ, 2006, 22 (4): 30-34]


 LI Hu,LIAO Dan,SU Jianqiang,et al. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):856.[doi:10.3724/SP.J.1145.2014.03027]
 TAN Yong,HE Dongjin,YOU Weibin,et al.Spartina alterniflora morphological plasticity and biomass allocation in response to tidal gradient change in Mindong coastal wetlands[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):863.[doi:10.3724/SP.J.1145.2014.03038]
 LIAO Dan,HUANG Huabin,ZHUANG Shixia,et al.Effects of exotic Spartina alterniflora on rhizosphere and endophytic bacterial community structures and diversity in roots of native mangroves[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):269.[doi:10.19675/j.cnki.1006-687x.2017.04032]
[4]廖丹,黄华斌,庄峙厦,等.多环芳烃(PAHs)污染对滨海湿地入侵植物互花米草的影响[J].应用与环境生物学报,2018,24(04):894.[doi: 10.19675/j.cnki.1006-687x.2018.03021]
 LIAO Dan,HUANG Huabin,ZHUANG Shixia & HONG Youwei **.Effects of polycyclic aromatic hydrocarbons (PAHs) contamination on invasive plant Spartina alterniflora in coastal wetlands[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):894.[doi: 10.19675/j.cnki.1006-687x.2018.03021]

更新日期/Last Update: 2018-12-25