|本期目录/Table of Contents|

[1]汪依妮,柳鑫,王健健,等.三工河流域不同植物群落细根对盐碱化的响应[J].应用与环境生物学报,2018,24(06):1229-1235.[doi:10.19675/j.cnki.1006-687x.2018.01045]
 WANG Yini,et al..Response of the fine roots of different plant communities to salinity in the Sangong River basin[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1229-1235.[doi:10.19675/j.cnki.1006-687x.2018.01045]
点击复制

三工河流域不同植物群落细根对盐碱化的响应
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1229-1235
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
Response of the fine roots of different plant communities to salinity in the Sangong River basin
作者:
汪依妮 柳鑫 王健健 田思惠 田晓龙 赵学春
1贵州大学动物科学学院 贵阳 550025 2贵州大学生命科学学院 贵阳 550025
Author(s):
WANG Yini et al.
1 College of Animal Science of Guizhou University, Guiyang 550025, China 2 College of Life Science of Guizhou University, Guiyang 550025, China
关键词:
荒漠植物群落盐碱化细根动态土壤容重土壤含水量
Keywords:
desert plant community salinization and alkalinization fine roots dynamic soil bulk density soil water content
分类号:
Q948.113
DOI:
10.19675/j.cnki.1006-687x.2018.01045
摘要:
采用连续土钻取样和分解袋分解法,对三工河流域5个不同盐碱化植物群落(琵琶柴群落、骆驼刺群落、沙枣群落、多枝柽柳群落、芦苇群落)整个生长季节的细根垂直分布、季节变化、分解动态、周转规律及其与土壤因子的关系进行研究. 结果表明,细根生物量随土层深度的增加均呈现先增加后逐渐降低的趋势,除芦苇群落外,均在10-20 cm土层达到最大值;5个群落的细根生物量分别为51.55、93.09、146.24、57.95、419.34 g/m2,随季节变化均呈现先增加后降低的趋势,在8月或9月达到峰值;在5个月的细根分解试验中,5个群落的细根分解速率呈现快、慢、快3个明显的阶段,分解速率属Peterson划分的慢组;不同群落的细根死亡量、年分解量和净生产力差异显著,三者均表现为芦苇群落>沙枣群落>骆驼刺群落>多枝柽柳群落>琵琶柴群落;5个群落的细根周转速率范围为1.41-1.98次/年,高于陆地生态系统细根的周转速率0.56次/年;逐步回归分析表明土壤pH、土壤电导率、土壤容重、土壤含水量是影响各变量的主要因子或共同主要因子,土壤pH是影响根系分布、分解和周转的最主要因素. 因此,盐碱植物群落细根生物量小,分解慢而周转快,土壤水盐特征决定了细根的分布和动态. (图2 表5 参35)
Abstract:
Throughout the whole growing season (from May to October 2010), sequential soil coring and ingrowth bag methods were adopted to investigate the vertical distribution, seasonal changes, decomposition dynamics, and turnover of fine roots, and their relationship with soil factors of five saline-alkali plant communities (Reaumuria songonica community, Alhagi sparsifolia community, Elaeagnus angustifolia community, Tamarix ramosissima community, and Phragmites australis community) in the Sangong River basin. Results showed that the fine root biomass increased initially, and decreased thereafter as soil layers deepened in the five studied communities. The fine root biomass reached its maximum in the 10–20-cm soil layer in all communities, except for P. australis. The fine root biomass of all five communities initially increased, but decreased thereafter from May to October, reaching its maximum in August or September, with values of 51.55, 93.09, 146.24, 57.95, and 419.34 g/m2, respectively. The fine root decomposition rate presented three distinct “fast-slow-fast” phases over the five-month long decomposition experiment, and all five decomposition rates were divided into the “slow group” of Peterson. The amount of fine root death, fine root decomposition, and fine root productivity were significantly different between communities: P. australis community > E. angustifolia community > A. sparsifolia community > T. ramosissima community > R. soongonica community. The range of fine root turnover rate was 1.41–1.98 times/a in the five communities, higher than the average value of 0.56 times/a observed in terrestrial ecosystems. Stepwise regression analysis showed that the soil pH, soil electrical conductivity, soil bulk density, and soil water content were the dominant factors or common dominant factors, and that the soil pH was the most important factor influencing the fine root distribution, decomposition, and turnover. Saline communities have a small fine root biomass, a slow decomposition rate, and a fast turnover rate; therefore the soil water content and the amount of salt present determine the distribution and dynamics of fine roots.

参考文献/References:

1 Vogt KA, Moore EE, Vogt DJ. Conifer fine root and mycorrhizal root biomass within the forest floor [J]. Can J For Res, 1983, 13 (13): 429-437
2  Trumbore S. Carbon respired by terrestrial ecosystems – recent progress and challenges [J]. Global Change Biol, 2006, 12 (2): 141-153
3  Lukac M, Godbold DL. Fine root biomass and turnover in southern Taiga estimated by root inclusion nets [J]. Plant Soil, 2010, 331 (1-2): 505-513
4  Richter DD, Markewitz D, Trumbore SE. Rapid accumulation and turnover of soil carbon in a re-establishing forest [J]. Nature, 1999, 400 (6739): 56-58
5 Hertel D, Leuschner C. A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus [J]. Plant Soil, 2002, 239 (2): 237-251
6 邓彦斌, 姜彦成, 刘健. 新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究[J]. 植物生态学报, 1998, 22 (2): 164-170 [Deng YB, Jiang YC, Liu J. The xeromorphic and saline morphic structure of leaves and assimilating branches in ten Chenopodiacea species in Xinjiang [J]. Chin J Plant Ecol, 1998, 22 (2): 164-170]
7 赵学春, 来利明, 朱林海, 王健健, 王永吉, 周继华, 姜联合, 马远见, 赵春强. 三工河流域两种琵琶柴群落细根生物量、分解与周转[J]. 生态学报, 2014, 34 (15): 4295-4303 [Zhao XC, Lai LM, Zhu LH, Wang JJ, Wang YJ, Zhou JH, Jiang LH, Ma YJ, Zhao CQ. Fine root biomass, decomposition and turnover of Reaumuria soongorica communities in the Sangong River Basin [J]. Acta Ecol Sin, 2014, 34 (15): 4295-4303]
8 王健健, 赵学春, 来利明, 朱林海, 王永吉, 周继华, 姜联合, 马远见, 赵春强, 郑元润. 新疆三工河流域柽柳群落细根生产与周转对土壤有机碳的贡献[J]. 林业科学研究, 2014, 27 (6): 809-814 [Wang JJ, Zhao XC, Lai LM, Zhu LH, Wang YJ, Zhou JH, Jiang LH, Ma YJ, Zhao CQ, Zheng YR. Contribution of fine root production and turnover to soil organic carbon in Tamarix ramosissima community in Sangong River Basin of Xinjiang, China [J]. For Res, 2014, 27 (6): 809-814]
9 王永吉, 赵学春, 来利明, 朱林海, 王健健, 周继华, 姜联合, 马远见, 赵春强, 郑元润. 三工河流域梭梭群落细根生长动态及周转[J]. 生态与农村环境学报, 2013, 29 (5): 666-670 [Wang YJ, Zhao XC, Lai LM, Zhu LH, Wang YJ, Zhou JH, Jiang LH, Ma YJ, Zhao CQ, Zheng YR. Growth dynamic and turnover of fine root Haloxylon ammodendron communities in Sangong River Basin [J]. J Plant Ecol Rural Environ, 2013, 29 (5): 666-670]
10 裴智琴, 周勇, 郑元润, 肖春旺. 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献[J]. 植物生态学报, 2011, 35 (11): 1182-1191 [Pei ZQ, Zhou Y, Zheng YR, Xiao CW. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region, China [J]. Chin J Plant Ecol, 2011, 35 (11): 1182-1191]
11 赵学春, 来利明, 朱林海, 王健健, 周继华, 姜联合, 马远见, 赵春强, 郑元润. 三工河流域琵琶柴群落特征与土壤因子的相关分析[J]. 生态学报, 2014, 34 (4): 878-889 [Zhao XC, Lai LM, Zhu LH, Wang JJ, Wang YJ, Zhou JH, Jiang LH, Ma YJ, Zhao CQ,Zheng YR. Correlation between characteristics of Reaumuria soongarica communities and soil factors in the Sangong River Basin [J]. Acta Ecol Sin, 2014, 34 (4): 878-889]
12 Fahey TJ, Hughes JW, Pu M, Arthur MA. Root decomposition and nutrient flux following whole tree harvest of northern hardwood forest. Forest Sci, 1988, 34: 744-768
13 Olson JS. Energy Storage and the balance of producers and decomposers in ecological systems [J]. Ecology, 1963, 44 (2): 322-331
14 Barriosmasias FH, Knipfer T, Mcelrone AJ. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization [J]. J Exp Bot, 2015, 66 (19): 6069.
15 夏延国, 董芳宇, 吕爽, 王键铭, 井家林, 李景文. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 2015, 37 (7): 37-44 [Xia YG, Dong FY, Lv S, Wang JM, Jing JL, Li JW. Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area [J]. J Beijing For Univ, 2015, 37 (7): 37-44]
16 井大炜, 邢尚军, 杜振宇, 刘芳春. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24 (7): 1809-1816 [Jing DY, Xing SJ, Du ZY, Liu FC. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings [J]. Chin J Appl Ecol, 2013, 24 (7): 1809-1816]
17 杨玉盛, 陈光水, 林鹏, 黄荣珍, 陈银秀, 何宗明. 格氏栲天然林与人工林细根生物量、季节动态及净生产力[J]. 生态学报, 2003, 23 (9): 1719-1730 [Yang YS, Chen GS, Lin P, Huang RZ, Chen YX, He ZM. Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China [J]. Acta Ecol Sin, 2003, 23 (9): 1719-1730]
18 John B, Pandey HN, Tripathi RS. Vertical distribution and seasonal changes of fine and coarse root mass in Pinus kesiya, Royle Ex. Gordon forest of three different ages [J]. Acta Oecol, 2001, 22 (5-6): 293-300
19 Imada S, Matsuo N, Acharya K, Yamanaka N . Effects of salinity on fine root distribution and whole plant biomass of Tamarix ramosissima, cuttings [J]. J Arid Environ, 2015, 114 (114): 84-90
20 叶功富, 张立华, 侯杰, 卢昌义, 吴柳青, 李秀明. 滨海沙地木麻黄人工林细根生物量及其动态研究[J]. 应用与环境生物学报, 2007, 13 (4): 481-485 [Ye GF, Zhang LH, Hou J, Lu CY, Wu LQ, Li XM. Fine root biomass and dynamics of Casuarina equisetifolia plantations on coastal sandy soil [J]. Chin J Appl Environ Biol, 2007, 13 (4): 481-485]
21 Jackson RB, Mooney HA. A global budget for fine root biomass, surface area, and nutrient contents [J]. PNAS, 1997, 94 (14): 7362
22 李峰, 谢永宏, 覃盈盈. 盐胁迫条件下湿地植物的适应策略[J]. 生态学杂志, 2009, 28 (2): 314-321 [Li F, Xie YH, Qin YY. Adaptive strategies of wetland plants in salt stress environment [J]. Chin J Ecol, 2009, 28 (2): 314-321]
23 Mauchamp A, Mésleard F. Salt tolerance in Phragmites australis, populations from coastal Mediterranean marshes [J]. Aquat Bot, 2001, 70 (1): 39-52
24 姚静, 施卫明. 盐胁迫对番茄根形态和幼苗生长的影响[J]. 土壤, 2008, 40 (2): 279-282 [Yao J, Shi WM. Effect of salt stress on structure and growth of tomato seedling roots [J]. Soils, 2008, 40 (2): 279-282]
25 Lopez B, Sabate S, Gracia CA. Annual and seasonal changes in fine root biomass of Quercus ilex L. forest. Plant Soil, 2001, 230: 125-134
26 Makkonen K, Helmisaari HS. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand [J]. For Ecol Manage, 1998, 102 (102): 283-290
27 Silver WL, Miya RK. Global patterns in root decomposition: comparisons of climate and litter quality effects [J]. Oecologia, 2001, 129 (3): 407
28 Jha P, Mohapatra KP. Leaf litterfall, fine root production and turnover in four major tree species of the semi-arid region of India [J]. Plant Soil, 2010, 326 (1-2): 481-491
29 王永吉, 赵学春, 来利明, 朱林海, 王健健, 王永吉, 周继华, 姜联合, 马远见,赵春强,郑元润. 沙枣人工群落细根生物量和周转过程[J]. 干旱区地理(汉文版), 2014, 37 (3): 548-554 [Wang YJ, Zhao XC, Lai LM, Zhu LH, Wang JJ, Wang YJ, Zhou JH, Jiang LH, Ma YJ, Zhao CQ, Zheng YR. Biomass and turnover in artificial community of Elaeagnus angustifolia [J]. Arid Land Geogr, 2014, 37 (3): 548-554]
30 Persson H?, Stadenberg I. Fine root dynamics in a Norway spruce forest (Picea abies (L. ) Karst) in eastern Sweden [J]. Plant Soil, 2010, 330 (1-2): 329-344
31 周宁一. 盐碱地微生物类群的多样性[J]. 微生物学通报, 2012, 39 (7): 1030-1030 [Zhou NY. Microbial diversity in saline-alkali soil [J]. Microbiol China, 2012, 39 (7): 1030-1030]
32 Bartsch N. Responses of root systems of young Pinus sylvestris and Picea abies plants to water deficits and soil acidity [J]. Can J For Res, 1987, 17 (8): 805-812
33 Gill RA, Jackson RB. Global pattern of root turnover for terrestrial ecosystems [J]. New Phytol, 2000, 147 (1): 13-31
34 Eissenstat DM, Rees KCJV. The growth and function of pine roots [J]. Ecol Bull, 1994, 44 (43): 76-91
35 Imada S, Matsuo N, Acharya K, Yamanaka N. Effects of salinity on fine root distribution and whole plant biomass of Tamarix ramosissima cuttings [J]. J Arid Environ, 2015, 114: 84-90

更新日期/Last Update: 2018-12-25