|本期目录/Table of Contents|

[1]曾丹,钟娟,谭红,等.基于卤虫致死试验分离淡色生赤壳菌YLZ42杀虫活性代谢产物[J].应用与环境生物学报,2018,24(05):1009-1014.[doi:10.19675/j.cnki.1006-687x.2018.02001]
 ZENG Dan,ZHONG Juan,et al.Isolation of an insecticidal metabolite from Bionectria ochroleuca YLZ42 based on the brine shrimp lethality test[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1009-1014.[doi:10.19675/j.cnki.1006-687x.2018.02001]
点击复制

基于卤虫致死试验分离淡色生赤壳菌YLZ42杀虫活性代谢产物()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1009-1014
栏目:
土壤微生物资源与生态专栏
出版日期:
2018-10-25

文章信息/Info

Title:
Isolation of an insecticidal metabolite from Bionectria ochroleuca YLZ42 based on the brine shrimp lethality test
作者:
曾丹钟娟谭红周金燕
1中国科学院成都生物研究所/环境与应用微生物重点实验室 成都 610041 2四川省环境微生物重点实验室 成都 610041 3中国科学院大学 北京 100049
Author(s):
ZENG Dan1 3 ZHONG Juan1 TAN Hong1 & ZHOU Jinyan1 2**
1 Key Laboratory of Environmental and Applied Microbiology/Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 Environmental Microbiology Key Laboratory of Sichuan Province,Chengdu 610041, China 3 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
淡色生赤壳菌卤虫致死试验杀虫活性稳定性
Keywords:
Bionectria ochroleuca brine shrimp lethality test insecticidal activity stability
分类号:
S476
DOI:
10.19675/j.cnki.1006-687x.2018.02001
摘要:
淡色生赤壳菌具有优良的生防潜力. 本实验室前期从广西玉林土壤中分离到一株对小菜蛾等多种农业害虫具有毒杀作用的淡色生赤壳菌YLZ42. 采用杀虫活性追踪的方法,用改进后的卤虫致死试验(Brine shrimp lethality test,BSLT)进行活性评价,通过硅胶柱层析、萃取、薄层制备、液相制备的手段进行分离纯化,并探索活性化合物的生物活性和稳定性. 分离到杀虫活性化合物纯品,高分辨率质谱显示该活性化合物相对分子质量为788,其对卤虫24 h的LC50为86.89 mg/L. 该化合物在温度低于30 ℃,pH 6-8以及光照和紫外光照条件下活性稳定. 该杀虫活性化合物的氢谱与已报道过的分子量为788的化合物均不相同,有望开发为新的微生物源杀虫剂. (图8 表2 参27)
Abstract:
Bionectria ochroleuca is potentially useful for bio-control. The strain B. ochroleuca YLZ42 isolated from the soil in Yulin of the Guangxi Zhuang Autonomous Region of China was previously shown to be able to kill various agricultural pests, including the diamondback moth, Plutella xylostella. This study aimed to isolate the insecticidal metabolite from the fermentation broth of B. ochroleuca YLZ42 and study its biological activity and stability. The isolation of the insecticidal metabolite was based on a bioassay-guided method. As a consequence, the optimized brine shrimp lethality test (BSLT) was chosen to evaluate the metabolite’s insecticidal ability. Silica gel column chromatography, extraction, preparative thin layer chromatography (TLC), and reverse-phase high-performance liquid chromatography (HPLC) were conducted to isolate the insecticidal metabolite. After isolation, the biological activity and stability of this insecticidal metabolite were then studied. Furthermore, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and proton nuclear magnetic resonance (1H-NMR) were used to further analyze the metabolite. A pure metabolite with insecticidal activity was obtained. The lethal concentration (LC50) of this metabolite against brine shrimp was found to be 86.89 mg/L after 24 h post-treatment. In addition, the stability of this insecticidal metabolite indicated that its insecticidal activity was stable while the temperature was below and the pH was between 6 and 8. Further, the metabolite was not sensitive to light in the UV to visible range. The molecular weight of this compound was determined with HR-ESI-MS to be 788. The 1H-NMR spectrum of this insecticidal metabolite was different from that of any other reported compound with the same molecular weight. The insecticidal metabolite has the potential to be developed as a new microbe-derived pesticide.

参考文献/References:

Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from omics to the field [J]. Annu Rev Phytopathol, 2010, 48: 395-417
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma – a genomic perspective [J]. Microbiology, 2012, 158: 35-45
Sharif T, Khalil S, Ahmad S. Effect of Rhizobium sp. on growth of pathogenic fungi under in vitro conditions [J]. Pak J Biol Sci, 2003, 6 (18): 1597–1599
Bacon CW, Yates IE, Hinton DM, Meredith F. Biological control of Fusarium moniliforme in maize [J]. Environ Health Perspect, 2001, 109 (S2): 325-332
Mukherjee PK, Horwitz BA, Herreraestrella A, Schmoll M, Kenerley CM. Trichoderma research in the genome era [J]. Annu Rev Phytopathol, 2013, 51: 105-129
Alkooranee JT, Aledan TR, Ali AK, Lu G, Zhang X, Wu JS, Fu CH, Li MT. Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum [J]. PLoS ONE, 2017, 12 (1): e0168850
Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes [J]. Microbiology, 2012, 158: 17-25
Das K, Prasanna R, Saxena AK. Rhizobia: a potential biocontrol agent for soilborne fungal pathogens [J]. Folia Microbiol, 2017, 62: 425-435
刘方春, 邢尚军, 马海琳, 杜振宇, 马丙尧, 陈波, 杜秉海. PGPR生物肥对甜樱桃(Cerasus pseudocerasus)根际土壤生物学特征的影响[J]. 应用与环境生物学报, 2012, 18 (5): 722-727 [Liu FC, Xing SJ, Ma LH, Du ZY, Ma BY, Chen B, Du BH. Effect of PGPR fertilizer on biological characteristics in Cerasus pseudocerasus rhizosphere [J]. Chin J Appl Environ Biol, 2012, 18 (5): 722-727]
祝英, 彭轶楠, 巩晓芳, 张军, 王治业, 郭增祥, 马坤源, 周剑平, 杨晖. 不同微生物菌剂对当归苗生长及根际土微生物和养分的影响[J]. 应用与环境生物学报, 2017, 23 (3): 511-519 [Zhu Y, Peng YN, Gong XF, Zhang J, Wang ZY, Guo ZX, Ma KY, Zhou JP, Yang H. Effects of different microbial agents on growth of Angelica sinensis and microorganism population and nutrients of rhizosphere soil [J]. Chin J Appl Environ Biol, 2017, 23 (3): 511-519]
张向民, 庄文颖.生赤壳科和丛赤壳科的中国新记录种[J]. 菌物系统, 2003, 22 (4): 525-530 [Zhang XM, Zhuang WY. New Chinese records of the Bionectriaceae and Nectriaceae [J]. Mycosystema, 2003, 22 (4): 525-530]
陈秀玲, 李景富, 张丽莉, 张俊峰, 王傲雪. 一株淡色生赤壳菌的生防作用分析及系统发育树构建[J]. 生物技术通报, 2014, 5: 184-189 [Chen XL, Li JF, Zhang LL, Zhang JF, Wang AX. Biocontrol efficacy and phylogenetic tree analysis of a new Bionectria ochroleuca strain [J]. Biotech Bull, 2014, 5: 184-189]
Shan TJ, Lou JF, Gao S, Zhou YF, Sun WB, Luo C, Zhou LG. Antibacterial activity of the endophytic fungi from a traditional Chinese herb Paris polyphylla var. chinensis [J]. Afr J Microbiol Res, 2012, 6 (14): 3440-3446
陆铮铮, 杨先权, 彭杰, 蒋选利, 丁海霞, 彭丽娟. 烟草青枯菌土壤拮抗真菌的筛选及鉴定[J]. 贵州农业科学, 2012, 40 (1): 86-89 [Lu ZZ, Yang XQ, Peng J, Jiang XL, Ding HX, Peng LJ. Screening and identification of antagonistic fungi in soil against Ralstonia solancearum [J]. Guizhou Agric Sci, 2012, 40 (1): 86-89]
曹晋忠, 郑朝辉, 刘艳云, 范黎, 李玉. 4个黄芩内生真菌菌株的鉴定及抗菌活性研究[J]. 安徽农业大学学报, 2011, 38 (3): 393-399 [Cao JZ, Zheng ZH, Liu YY, Fan L, Li Y. Identification and antimicrobial activity screening for endophytic fungi from Scutellaria baicaiensis Georgi [J]. J Anhui Agric Univ, 2011, 38 (3): 393-399]
Samaga PV, Rai VR. Diversity and bioactive potential of endophytic fungi from, Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum, collected from Western Ghats of India [J]. Ann Microbiol, 2015, 66 (1): 229-244
Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MC, Ruiz RC, Melo IS, Tasic L, Souza AO. Biogenic antimicrobial silver nanoparticles produced by fungi [J]. Appl Microbiol Biotechnol, 2013, 97 (2): 775-782
宋福强, 王占斌, 王倡宪, 杜春梅, 常伟. 引进菌株Bionectria ochroleuca对几种植物病原真菌的拮抗效应[J]. 中国农学通报, 2014, 30 (18): 166-170 [Song FQ, Wang ZB, Wang CX, Du CM, Chang W. Antagonistic effects of the introduced fungus Bionectria ochroleuca on several plant pathogenic fungi [J]. Chin Agric Bull, 2014, 30 (18): 166-170]
何海波, 钟娟, 杨杰, 周金燕, 谭红. 一株具有杀虫活性真菌的筛选及活性物质稳定性研究[J]. 生物技术通报, 2014, 9: 109-113 [He HB, Zhong J, Yang J, Zhong JY, Tan H. Screening of a fungus with insecticidal activity and measure of the stability of its bioactive compound [J]. Biotech Bull, 2014, 9: 109-113]
Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD. A microwell cytotoxicity assay using Artemia salina (brine shrimp) [J]. Planta Med, 1993, 59 (3): 250-253
Wu C. An important player in brine shrimp lethality bioassay: the solvent [J]. J Adv Pharm Technol Res, 2014, 5: 57-58
Sahgal G, Jayanthi TP, Poh CS, Ming TO. Interference from ordinarily used solvents in the outcomes of Artemia salina lethality test [J]. J Adv Pharm Technol Res, 2013, 4 (4): 179-182
Ju YM, Juang SH, Chen KJ, Lee TH. TMC-151 a monoacetate, a new polyketide from Bionectria ochroleuca [J]. Cheminform, 2007, 38 (26): 561-564
Wang B, You JL, King JB, Cai SG, Park E, Powell DR, Cichewicz RH. Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation [J]. J Nat Prod, 2014, 77 (10): 2273-2279
刘琴英, 蒋冬花, 齐育平, 陈璨, 谢祥聪, 孙蕾. 淡色生赤壳菌Bo-1菌株拮抗物质的分离纯化、解析及活性分析[J]. 植物保护学报, 2014, 41 (1): 41-44 [Liu QY, Jiang DH, Qi YP, Chen C, Xie XC, Sun L. Isolation, identification and activity analysis of antimicrobial compound from Bionectria ochroleuca strain Bo-1 [J]. J Plant Protec, 2014, 41 (1): 41-44]
李元铭, 郭志凯, 王佩, 戴好富, 张利莉, 梅文莉. 海南海桑内生真菌Bionectria ochroleuca HHS111023次生代谢产物的研究[J]. 中国海洋药物, 2016, 35 (2): 1-6 [Li YM, Guo ZK, Wang P, Dai HF, Zhang LL, Mei WL. Studies on the secondary metabolites from the endophytic fungus Bionectria ochroleuca HHS111023 of Sonneratia hainanensis [J]. Chin J Mar Drug, 2016, 35 (2): 1-6 ]
Ebrahim W, Kjer J, El AM, Wray V, Lin W, Ebel R, Lai D, Proksch P. Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris [J]. Mar Drugs, 2012, 10 (5): 1081-1091

更新日期/Last Update: 2018-10-25