|本期目录/Table of Contents|

[1]廖丹,黄华斌,庄峙厦,等.多环芳烃(PAHs)污染对滨海湿地入侵植物互花米草的影响[J].应用与环境生物学报,2018,24(04):894-900.[doi: 10.19675/j.cnki.1006-687x.2018.03021]
 LIAO Dan,HUANG Huabin,ZHUANG Shixia & HONG Youwei **.Effects of polycyclic aromatic hydrocarbons (PAHs) contamination on invasive plant Spartina alterniflora in coastal wetlands[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):894-900.[doi: 10.19675/j.cnki.1006-687x.2018.03021]





Effects of polycyclic aromatic hydrocarbons (PAHs) contamination on invasive plant Spartina alterniflora in coastal wetlands
1厦门华厦学院检验科学与技术系 厦门 361024 2中国科学院城市环境研究所城市环境与健康重点实验室 厦门 361021
LIAO Dan1 HUANG Huabin1 ZHUANG Shixia1 & HONG Youwei 2**
1 Department of Science and Technology for Inspection of Xiamen Huaxia University, Xiamen 361024, China 2 Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
PAHs Spartina alterniflora endophytic bacteria PAH-ring hydroxylating dioxygenases Real-Time PCR
滨海湿地生态系统正遭受着人为活动或自然因素的威胁,为探究多环芳烃(PAHs)污染对滨海湿地入侵植物互花米草根际、根内微生物的影响及植物-微生物联合修复PAHs的潜力,设置含有不同浓度菲和芘的沉积物处理,通过盆栽实验对互花米草幼苗进行暴露. 结果显示,培养70 d后,菲和芘的去除率分别为13%-36%和11%-30%;菲处理的互花米草根际沉积物中脱氢酶活性显著高于对照(P < 0.05),非根际沉积物多酚氧化酶活性则降低10%. 磷脂脂肪酸(PLFA)分析显示,菲处理显著降低了根际沉积物微生物量(P < 0.05),尤其是革兰氏阴性菌下降了24%;而芘处理对脱氢酶、多酚氧化酶以及总微生物量的影响相对较小. 100 mg/kg菲处理使得根际与根内革兰氏阴性菌PAHs-环羟基双加氧酶基因(PAH-RHDα-GN)丰度比对照组分别增加了100倍和3倍;而100 mg/kg芘处理使得根际与非根际沉积物中PAH-RHDα-GP丰度显著升高(P < 0.05). 上述结果表明,入侵植物互花米草对PAHs污染存在明显的响应,其根内细菌在植物-微生物联合修复PAHs污染具有重要的作用. (图5 表4 参37)
The functions of coastal wetland ecosystems are increasingly threatened by anthropogenic and natural factors. This study aimed to investigate the effects of polycyclic aromatic hydrocarbons (PAHs) on rhizosphere and endophytic bacterial communities of invasive plants (Spartina alterniflora) and the plant-microbe associated bioremediation potential of PAH-contaminated sediments. Based on pot experiments, S. alterniflora was selected and cultivated under different concentrations of phenanthrene (PHE) and pyrene (PYR) contaminated sediments (for 70 d). The results indicated that the amount of PHE removed from the sediments ranged from 13% to 36%, whereas PYR ranged from 11% to 30%. In rhizosphere sediments, dehydrogenase activities were significantly (P < 0.05) enhanced by higher concentrations of PHE treatments, whereas polyphenol oxidase activities were prohibited by greater than 10% in non-rhizosphere sediments. Compared with the control, PHE treatments had significantly (P < 0.05) lower total microbial biomass (phospholipid fatty acids, PLFA), especially for gram-negative bacteria with more than a 24% decrease. However, the PYR treatments had little effect on the dehydrogenase, polyphenol oxidase, and total PLFA biomass. The greatest abundance of PAH-ring hydroxylating dioxygenases (PAH-RHDα-GN) isolated from the gram-negative bacteria of rhizoplane and endophyte in roots were found in the 100 mg/kg PHE treatment and increased by more than 100- and 3-fold, respectively. The greatest abundances of PAH-ring hydroxylating dioxygenases (PAH-RHDα-GP) isolated from gram-positive bacteria of rhizosphere and non-rhizosphere were significantly enhanced in the 100 mg/kg PYR treatment. These results suggested that PAH pollution will result in a comprehensive effect on S. alterniflora, whose endophytic bacteria might play an important role in the plant-microbe associated bioremediation potential of PAH contaminated sediments.


1 Hensel MJS, Silliman BR. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem [J]. Proc Natl Acad Sci USA, 2013, 110: 20621-20626
2 Qiu JN. China faces up to ‘terrible’ state of its ecosystems [J]. Nature, 2011, 471: 19-19
3 Kulkarni R, Deobagkar D, Zinjarde S. Metals in mangrove ecosystems and associated biota: a global perspective [J]. Ecotox Environ Safe, 2018, 153: 215-228
4 Wang J , Wang J , Zhao Z , Chen J , Lu H, Liu G, Zhou J, Guan X. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community [J]. Environ Pollut, 2017, 231: 1145-1152
5 Hong YW, Yuan DX, Lin QM, Yang TL. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem [J]. Mar Poll Bull, 2008, 56: 1400-1405
6 Raza M, Zakaria MP, Hashim NR, Yim UH, Kannan N, Ha SY. Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia indication of anthropogenic input [J]. Environ Earth Sci, 2013, 70: 2425-2436
7 Oliveira V, Gomes NCM, Almeida A, Silva AMS, Simoes MMQ, Smalla K, Cunha A. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria [J]. Mol Ecol, 2014, 23: 1392-1404
8 Wan SW, Qin P, Liu JN, Zhou HX. The positive and negative effects of exotic Spartina alterniflora in China [J]. Ecol Eng, 2009, 35: 444-452
9 高抒, 杜永芬, 谢文静, 高文华, 王丹丹, 吴晓东. 苏沪浙闽海岸互花米草盐沼的环境-生态动力过程研究进展[J]. 中国科学: 地球科学, 2014, 44 (11): 2339-2357 [Gao S, Du Y F, Xie W J, Gao WH, Wang DD. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines [J]. Sci China: Earth Sci, 2014, 57: 2567-2586]
10 廖丹, 黄华斌, 庄峙厦, 洪有为. 互花米草入侵对红树秋茄根际与根内细菌群落结构与多样性的影响[J]. 应用与环境生物学报, 2018, 23 (2): 1-13 [Liao D, Huang HB, Zhuang SX, Hong YW. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing [J]. Chin J Appl Environ Biol , 2018, 23 (2): 1-13]
11 Launen LA, Dutta J, Turpeinen R, Eastep ME, Dorn R, Buggs VH, Leonard JW, Haggblom MM. Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor [J]. Biodegradation, 2008, 19, 347-363
12 Watts AW, Ballestero TP, Gardner KH. Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments [J]. Chemosphere, 2006, 62: 1253-1260
13 刘静, 周美利, 张楠, 陈国平, 赵瑞瑞, 高鑫, 石福臣. 多环芳烃菲和芘对互花米草生长和生理特征的影响[J]. 南开大学学报(自然科学版), 2015, 48 (1) : 14-20 [Liu J, Zhou ML, Zhang N. , Chen GP, Zhao RR, Gao X, Shi FC. Effects of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) on the growth and physiological characteristics of Spatina alterniflore [J]. Acta Sci Nat Univ Nankaiensis, 2015, 48 (1): 14-20]
14 Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils [J]. Chemosphere, 2013, 90: 1317-1332
15 Andreolli M, Lampis S, Poli M, Gullner G, Biro B, Vallini G. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons [J]. Chemosphere, 2013, 92: 688-694
16 Germaine KJ, Keogh E, Ryan D, Dowling DN. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation [J]. FEMS Microbiol Ecol, 2009, 296: 226-234
17 Hong YW, Yuan DX, Liao D, Liu BM. Accumulation of polycyclic aromatic hydrocarbons from contaminated soil by Kandelia candel [J]. Acta Oceanol Sin, 2009, 28: 24-29
18 Hong YW, Yu S, Yu GB, Liu Y, Li GL, Wang M. Impacts of urbanization on surface sediment quality evidence from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) contaminations in the Grand Canal of China [J]. Environ Sci Pollut Res, 2012, 19: 1352-1363
19 Kourtev PS, Ehrenfeld JG, Hggblom M. Exotic plant species alter the microbial community structure and function in the soil [J]. Ecology, 2002, 83 (11): 3152-3166
20 Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R. Phospholipid fatty acid - A bioindicator of environment monitoring and assessment in soil ecosystem [J]. Curr Sci, 2005, 89: 1103-1112
21 Gu Y, Wang P, Kong CH. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety [J]. Eur J Soil Biol, 2009, 45: 436-441
22 Cebron A, Norini MP, Beguiristain T, Leyval C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD alpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples [J]. J Microbiol Method, 2008, 73: 148-159
23 Zhang QF, Peng JJ, Chen Q, Yang XR, Hong YW, Su JQ. Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment [J]. Can J Microbiol, 2013, 59: 825-836
24 Khan S, Rehman S, Cao Q, Jehan N, Shah MT. Uptake and translocation of lead and pyrene by ryegrass cultivated in aged spiked soil [J]. Int J Environ Pollut, 2011, 45: 110-122
25 Gao YZ, Zhu LZ. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils [J]. Chemosphere, 2004, 55: 1169-1178
26 Liu R, Xiao N, Wei SH, Zhao LX, An J. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix [J]. Sci Total Environ, 2014, 473: 350-358
27 Cheema SA, Khan MI, Tang XJ, Zhang CK, Shen CF, Malik Z, Ali S, Yang JJ, Shen KL, Chen XC, Chen YX. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea) [J]. J Hazard Mater, 2009, 166: 1226-1231
28 Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses [J]. Chemosphere, 2010, 81: 1084-1090
29 Pratt B, Riesen R, Johnston CG. PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment [J]. Microb Ecol, 2012, 64: 680-691
30 Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates [J]. Environ Microbiol, 2011, 13: 722-736
31 Meng LA, Zhu YG. Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: how does it affect functional microbial abundance? [J] Environ Sci Technol, 2011, 45: 1579-1585
32 Singleton DR, Hu J, Aitken MD. Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium [J]. Appl Environ Microbiol, 2012, 78: 3552-3559
33 Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW. Microbial expression profiles in the rhizosphere of willows depend on soil contamination [J]. ISME J, 2014, 8: 344-358
34 Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants [J]. Nat Biotechnol, 2004, 22: 583-588
35 Phillips LA, Germida JJ, Farrell RE, Greer CW. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants [J]. Soil Biol Biochem, 2008, 40: 3054-3064
36 Cebron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil [J]. Appl Environ Microbiol, 2009, 75: 6322-6330
37 Ding GC, Heuer H, Zuhlke S, Spiteller M, Pronk GJ, Heister K, Kogel-Knabner I, Smalla K. Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system [J]. Appl Environ Microbiol, 2009, 76: 4765-4771


 LU Xiaoxia,WU Shuke,HOU Zhen,et al.Isolation and Degrading Properties of PAHs-Degrading Bacteria from the Contaminated Soil of a Coking Plant[J].Chinese Journal of Applied & Environmental Biology,2011,17(04):722.[doi:10.3724/SP.J.1145.2011.00722]
[2]王绍良,崔志松,郑立,等.Porphyrobacter sp. D22F的降解特性及其在石油降解菌群中的生态位[J].应用与环境生物学报,2012,18(01):122.[doi:10.3724/SP.J.1145.2012.00122]
 WANG Shaoliang,CUI Zhisong,ZHENG Li,et al.Characterization of PAHs-degrading Bacterium Porphyrobacter sp. D22F and Its Ecological Niche in Oil-degrading Consortium D22-1[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):122.[doi:10.3724/SP.J.1145.2012.00122]
 ZHU Linhai,DING Jinzhi,WANG Jianjian,et al.Ecological Effects of Oil Pollution on Soil - Plant System[J].Chinese Journal of Applied & Environmental Biology,2012,18(04):320.[doi:10.3724/SP.J.1145.2012.00320]
 LI Hu,LIAO Dan,SU Jianqiang,et al. Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):856.[doi:10.3724/SP.J.1145.2014.03027]
 TAN Yong,HE Dongjin,YOU Weibin,et al.Spartina alterniflora morphological plasticity and biomass allocation in response to tidal gradient change in Mindong coastal wetlands[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):863.[doi:10.3724/SP.J.1145.2014.03038]
 LIAO Dan,HUANG Huabin,ZHUANG Shixia,et al.Effects of exotic Spartina alterniflora on rhizosphere and endophytic bacterial community structures and diversity in roots of native mangroves[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):269.[doi:10.19675/j.cnki.1006-687x.2017.04032]
[7]李沙沙 樊 同 张 超 朱红雨 周婷南 吴悦琦 贺贵书 王开运** 李海禹 毕星.长江口芦苇和互花米草叶面积生长对立地增温的响应*[J].应用与环境生物学报,2018,24(06):1.[doi:10.19675/j.cnki.1006-687x.2018.01010]
 LI Shasha,FAN Tong,et al.Response of leaf area growth of Phragmites Australis and Spartina alterniflora to elevated temperature in the site of The Yangtze River estuary*[J].Chinese Journal of Applied & Environmental Biology,2018,24(04):1.[doi:10.19675/j.cnki.1006-687x.2018.01010]

更新日期/Last Update: 2018-08-25