|本期目录/Table of Contents|

[1]苟学磊,钟娟,周金燕,等.卵孢菌素产生菌株角毛壳菌(Chaetomium cupreum)CH21-20发酵培养条件优化[J].应用与环境生物学报,2019,25(01):143-150.[doi:10.19675/j.cnki.1006-687x.2018.03043]
 GOU Xuelei,ZHONG Juan**,et al.Fermentation optimization of oosporein produced by Chaetomium cupreum CH21-20[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):143-150.[doi:10.19675/j.cnki.1006-687x.2018.03043]
点击复制

卵孢菌素产生菌株角毛壳菌(Chaetomium cupreum)CH21-20发酵培养条件优化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年01期
页码:
143-150
栏目:
研究论文
出版日期:
2019-02-25

文章信息/Info

Title:
Fermentation optimization of oosporein produced by Chaetomium cupreum CH21-20
作者:
苟学磊 钟娟 周金燕 舒丹 赵杰 杨杰 谭红
1中国科学院成都生物研究所,中国科学院环境与应用微生物重点实验室 成都 610041 2中国科学院大学 北京 100039
Author(s):
GOU Xuelei1 2 ZHONG Juan1** ZHOU Jinyan1 SHU Dan1 ZHAO Jie1 2 YANG Jie1 & TAN Hong1**
1 Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
角毛壳菌卵孢菌素发酵条件培养基成分响应面优化
Keywords:
Chaetomium cupreum oosporein fermentation parameter composition of culture media response surface methodology
分类号:
Q936 : TQ920
DOI:
10.19675/j.cnki.1006-687x.2018.03043
摘要:
卵孢菌素(Oosporein)是具有广谱抗菌活性的二联苯醌类化合物;角毛壳菌(Chaetomium cupreum)CH21-20为本实验室通过遗传改良获得的卵孢菌素高产菌株. 利用该菌株进行发酵条件研究,获得其最适发酵条件为接种量(体积分数)3%、初始pH 7.0、装液量60 mL/250 mL、摇床转速180 r/min、培养温度24 ℃. 培养基碳氮源和无机盐筛选结果表明,15.0 g/L蔗糖、5.0 g/L蛋白粉及0.5 g/L氯化钠能显著提高卵孢菌素产量. 以卵孢菌素为响应值,对蔗糖、蛋白粉、氯化钠进行三因素三水平的Box-Behnken实验设计及响应面法优化研究,得到蔗糖、蛋白粉及氯化钠的最佳配比分别为15.63 g/L、5.22 g/L、0.53 g/L,预测在此发酵条件下卵孢菌素最高产量可达2 547 μg/mL,实验验证得到卵孢菌素产量为2 478 μg/mL,与预测值接近;发酵条件优化后,卵孢菌素产量提高了56.14%. 本研究获得了卵孢菌素稳定高产的摇瓶发酵技术参数. (图7 表7 参25)
Abstract:
Oosporein is a dibenzoquinone pigment with broad-spectrum antimicrobial activities. The oosporein hyper-producing mutant strain Chaetomium cupreum CH21-20 was obtained via genetic modification. We studied the effects of the fermentation parameters on the production of oosporein in the fermentation process of CH21-20. The results showed that the optimal values of the fermentation parameters were: inoculum size 3%, initial pH 7.0, culture volume 60 mL per 250 mL shake flask, culture temperature 24 ℃, and rotation ratio 180 r/min. The results of the experiments for screening carbon and nitrogen sources and inorganic salts revealed that 15.0 g/L sucrose, 5.0 g/L protein powder, and 0.5 g/L sodium chloride had significant influences on the yield of oosporein. Accordingly, a Box-Behnken Design of three factors and three levels was designed for the production of oosporein as a response. The highest production of oosporein was 2547 μg/mL when the concentrations of sucrose, protein powder, and sodium chloride were 15.63 g/L, 5.22 g/L, and 0.53 g/L, respectively, after response surface prediction. The terminal production of oosporein reached 2478 μg/mL after the confirmatory experiment, enhanced by almost 56.14% compared to the production before the conditions were optimized. Thus, in the present study, stable and high-producing fermentation parameters of oosporein were determined in the shake-flask.

参考文献/References:

1 Takeshita H, Anchel M. Production of oosporein and its leuco form by Basidiomycete species [J]. Science, 1965, 147 (3654): 152-153 2 Kogl F, Van Wessem GC. Analysis concerning pigments of fungi XIV: concerning oosporein, the pigment of Oospora colorans van Beyma [J]. Recl Trav Chim Pays Bas, 1944, 63: 5-24 3 Abendstein D, Pernfuss B, Strasser H. Evaluation of Beauveria brongniartii and its metabolite oosporein regarding phytotoxicity on seed potatoes [J]. Biocontrol Sci Technol, 2000, 10 (6): 789-796 4 Vining LC, Kelleher WJ, Schwarting AE. Oosporein production by a strain of Beauveria bassiana originally identified as Amanita muscaria [J]. Can J Microbiol, 1962, 8 (6): 931-933 5 Divekar PV, Haskins RH, Vining LC. Oosporein from an Acremonium sp. [J]. Can J Chem, 1959, 37 (12): 2097-2099 6 Cole RJ, Kirksey JW, Cutler HG, Davis EE. Toxic effects of oosporein from Chaetomium trilaterale [J]. J Agric Food Chem, 1974, 22 (3): 517-520 7 Lloyd G, Robertson A, Sankey GB. The chemistry of fungi. part XXV. oosporein, a metabolite of Chaetomium aureum chivers [J]. J Chem Soc (Resumed), 1955: 2163-2165 8 Mao BZ, Huang C, Yang GM. Separation and determination of the bioactivity of oosporein from Chaetomium cupreum [J]. Afr J Biotechnol, 2010, 9 (9): 5955-5961 9 He G, Yan J, Wu XY, Gou XJ, Li WC. Oosporein from Tremella fuciformis [J]. Acta Crystallogr Sect E: Struct Rep Online, 2012, 68 (4): o1231-o1231 10 Feng P, Shang Y, Cen K, Wang C. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity [J]. Proc Natl Acad Sci USA, 2015, 112 (39): 11365-11370 11 Klingen I, Meadow R, Aandal T. Mortality of Delia floralis, Galleria mellonella and Mamestra brassicae treated with insect pathogenic hyphomycetous fungi [J]. J Appl Entomol, 2002, 126 (5): 231-237 12 Labbe RM, Cloutier C, Brodeur J. Prey selection by Dicyphus hesperus of infected or parasitized greenhouse whitefly [J]. Biocontrol Sci Technol, 2006, 16 (5): 485-494 13 Favilla M, Macchia L, Gallo A, Altomare C. Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays [J]. Food Chem Toxicol, 2006, 44 (11): 1922-1931 14 Alurappa R, Bojegowda MRM, Kumar V, Mallesh NK, Chowdappa S. Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. [J]. Nat Prod Res, 2014, 28 (23): 2217-2220 15 Terry BJ, Liu WC, Cianci CW, Proszynski E, Fernandes P, Bush K, Meyers E. Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein [J]. J Antibiot, 1992, 45 (2): 286-288 16 Strasser H, Vey A, Butt TM. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? [J]. Biocontrol Sci Technol, 2000, 10 (6): 717-735 17 Strasser H, Abendstein D, Stuppner H. Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein [J]. Mycol Res, 2000, 104 (10): 1227-1233 18 Basyouni SHE, Brewer D, Vining LC. Pigments of the genus Beauveria [J]. Can J Bot, 1968, 46 (4): 441-448 19 Michelitsch A, Rückert U, Rittmannsberger A, Seger C, Strasser H, Likussar W. Accurate determination of oosporein in fungal culture broth by differential pulse polarography [J]. J Agric Food Chem, 2004, 52 (6): 1423-1426 20 卢梦梦, 潘清灵, 李赛妮, 王磊, 郝再彬, 章卫民. 深红虫草高产卵孢菌素的培养基筛选及发酵条件优化[J]. 菌物学报, 2017, 36 (4): 503-511 [Lu MM, Pan QL, Li SN, Wang L, Hao ZB, Zhang WM. Screening of culture medium and optimization of fermentation condition for oosporein production of Cordyceps cardinalis strain [J]. Mygosystema, 2017, 36 (4): 503-511] 21 何海清, 杨莉娜, 周金燕, 谭红. 紫外分光光度法和HPLC法测定角毛壳菌CH-1发酵液中卵孢菌素含量的比较研究[J]. 中国抗生素杂志, 2015, 40 (8): 593-598 [He HQ, Yang LN, Zhou JY, Tan H. Comparison of UV spectrophotometry and HPLC on quantitative determination of oosporein in the broth of Chaetomium cupreum CH-1 [J]. Chin J Antibiot, 2015, 40 (8): 593-598] 22 El Basyouni SH, Vining LC. Biosynthesis of oosporein in Beauveria bassiana (Bals.) Vuill [J]. Can J Biochem, 1966, 44 (5): 557-565 23 Timoumi A, Guillouet SE, Molina-Jouve C, Fillaudeau L, Corret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica [J]. Appl Microbiol Biotechnol, 2018, 102 (9): 3831-3848 24 Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications[J]. Appl Microbiol Biotechnol, 2017, 101(10): 3991-4008 25 MacLeod DM. Investigations on the genera Beauveria Vuill, and Tritirachium Limber [J]. Can J Bot, 1954, 32 (6): 818-890

更新日期/Last Update: 2019-02-25