|本期目录/Table of Contents|

[1]崔永亮,李艳梅,李利军,等.钒钛磁铁矿尾矿土壤解钾细菌的多样性及镉对其解钾能力的影响[J].应用与环境生物学报,2019,25(01):76-82.[doi:10.19675/j.cnki.1006-687x.2018.04016]
 CUI Yongliang,LI Yanmei,LI Lijun,et al.Effect of cadmium in the V-Ti tailings soil on the potassium-dissolving ability of potassium-dissolving bacteria[J].Chinese Journal of Applied & Environmental Biology,2019,25(01):76-82.[doi:10.19675/j.cnki.1006-687x.2018.04016]
点击复制

钒钛磁铁矿尾矿土壤解钾细菌的多样性及镉对其解钾能力的影响
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年01期
页码:
76-82
栏目:
研究论文
出版日期:
2019-03-01

文章信息/Info

Title:
Effect of cadmium in the V-Ti tailings soil on the potassium-dissolving ability of potassium-dissolving bacteria
作者:
崔永亮 李艳梅 李利军 游棵 郑晓琴 涂卫国 王琼瑶 庄启国 王永志 吴帆 余秀梅
1四川省自然资源科学研究院 成都 610015 2四川农业大学资源学院 成都 611130
Author(s):
CUI Yongliang1 LI Yanmei2 LI Lijun1 YOU Ke2 ZHENG Xiaoqin1 TU Weiguo1 WANG Qiongyao1 ZHUANG Qiguo1 WANG Yongzhi1 WU Fan1 & YU Xiumei2**
1 Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China 2 Department of Resources, Sichuan Agricultural University, Wenjiang 611130, China
关键词:
解钾细菌产碱杆菌尾矿土壤
Keywords:
potassium-dissolving bacteria cadmium Advenella tailing soil
分类号:
S154.3 : X53
DOI:
10.19675/j.cnki.1006-687x.2018.04016
摘要:
解钾菌能分解钾长石、磷灰石等不溶硅铝酸盐无机矿物,使土壤难溶性钾转化为可溶性养分,促进作物生长发育,而钒钛磁铁矿尾矿土壤中解钾细菌的多样性及重金属镉对细菌解钾能力是否有影响尚不清楚. 从攀枝花钒钛磁铁尾矿土壤中分离纯化细菌资源,通过对细菌解钾能力的定性筛选和定量测定获得高效解钾细菌,利用16S rRNA基因相似性与系统发育分析明确解钾细菌的进化地位,研究不同浓度镉胁迫下高效解钾细菌解钾效率的变化规律,揭示镉对细菌解钾能力的影响. 结果显示,通过钾长石粉筛选培养基点接细菌,从136株钒钛磁铁尾矿土壤细菌中筛选出7株解钾细菌,包括根瘤菌(Rhizobium)3株、芽孢杆菌(Bacillus)2株、苍白杆菌(Ochrobactrum)1株、产碱杆菌(Advenella)1株,其在钾长石粉液体培养基中的解钾量为18.63-31.32 mg/L. 其中,产碱杆菌KT106解钾能力最强,在培养第6天时解钾量最大;KT106对镉表现出一定的耐受性,其在不同浓度的镉胁迫下解钾效率降低. 本研究表明,攀枝花钒钛磁铁尾矿土中仅有5%细菌具有解钾能力,较高浓度的重金属镉对细菌解钾能力有抑制作用,结果可为解钾促生细菌强化植物修复重金属污染土壤提供科学支撑. (图4 表1 参37)
Abstract:
Potassium-dissolving bacteria can decompose potassium feldspar, apatite, and other insoluble silicon aluminate inorganic minerals. The insoluble potassium in soil is converted into a soluble nutrient that promotes plant growth and development. However, the diversity of potassium-dissolving bacteria in the V-Ti magnetite tailings soil and the effects of heavy metal cadmium on the potassium-dissolving ability of bacteria remain unclear. A total of 136 bacterial strains were isolated from the V-Ti magnetite tailing soil in Panzhihua by inoculating bacteria on potassium feldspar. The qualitative screening and quantitative measurement of the potassium-dissolving activity of the isolates led to the identification of seven highly efficient potassium-dissolving bacterial strains, including three Rhizobium, two Bacillus, one Ochrobactrum, and one Advenella strains. Their evolutionary status was determined by performing a similarity and phylogenetic analysis of their 16S rRNA genes. Their potassium-dissolving efficiency change rule was measured under different concentrations of cadmium stress, revealing the influence of cadmium on their potassium-dissolving ability. Their soluble potassium content was 18.63–31.32 mg/L in the potassium feldspar liquid medium. Among the seven strains, Advenella KT106 showed the highest potassium-dissolving capacity, and its highest potassium-dissolving content was obtained at the sixth hour. KT106 showed tolerance against cadmium. The potassium-dissolving efficiency decreased with increasing concentrations of cadmium stress. Only 5% bacteria from the V-Ti magnetite tailings soil showed the potassium-dissolving ability, but these potassium-dissolving bacteria had certain diversity. Cadmium had an inhibition effect on the potassium-dissolving activity of bacteria. This study provided a scientific basis for the use of potassium-dissolving bacteria in the phytoremediation of heavy metal-contaminated soil.

参考文献/References:

1 Li ZY, Ma ZW, Tsering JK, Yuan ZW, Huang L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment [J]. Sci Total Environ, 2014, 468: 843- 853
2 杨金水, 杨扬, 孙良明, 刘伟杰, 曾远, 邓春萍, 邢冠岚, 袁红莉. 铅锌矿区土壤真菌响应重金属污染的群落组成变化[J]. 北京大学学报(自然科学版), 2017, 2 (3): 387-396 [Yang JS, Yang Y, Sun LM, Liu WJ, Zeng Y, Deng CP, Xing GL, Yuan HL. Characterization of soil fungal community in response to heavy metal pollution in lead-zinc mining area [J]. Acta Sci Natl Univ Pek, 2017, 2 (3): 387-396]
3 徐良将,张明礼,杨浩. 土壤重金属镉污染的生物修复技术研究进展[J]. 南京师范大学学报(自然科学版), 2011, 34 (1): 102-106 [Xu LJ, Zhang ML, Yang H. Research progress of bioremediation technology of cadmium polluted soil [J]. J Nanjing Nor Univ (Nat Sci Ed), 2011, 34 (1): 102-106]
4 卢红玲, 肖光辉, 刘青山, 彭新德. 土壤镉污染现状及其治理措施研究进展[J]. 南方农业学报, 2014, 45 (11): 1986-1993 [Lu HL, Xiao GH, Liu QS, Peng XD. Advances in soil Cd pollution and solution measures [J]. J S Agric, 2014, 45 (11):1986-1993]
5 李韵诗, 冯冲凌, 吴晓芙, 石润. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015, 35 (20): 6881-6890 [Li YS, Feng CL, Wu XF, Shi R. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils [J]. Acta Ecol Sin, 2015, 35 (20): 6881-6890]
6 Nele W, Daniel L, Safiyh T, Lee N, Jaco V. Exploiting plant-microbe partnerships to improve biomass production and remediation [J]. Trends Biotechnol, 2009, 27 (10): 591-598
7 曾加会, 李元媛, 阮迪申, 晁元卿, 仇荣亮, 杨燕花, 王诗忠. 植物根际促生菌及丛枝菌根真菌协助植物修复重金属污染土壤的机制[J]. 微生物学通报, 2017, 44 (5): 1214?1221 [Zeng JH, Li YY, Ruan DS, Chao YQ, Qiu RQ, Yang YH, Wang SZ. Phytoremediation of heavy metal contaminated soils by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi [J]. Microbiol Chin, 2017, 44 (5): 1214-1221]
8 Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils [J]. Biotechnol Adv, 2011, 29 (2): 248-258
9 Mohammad SK, Almas Z, Parvaze AW, Mohammad O. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils [J]. Environ Chem Lett, 2009, 7: 1–19
10 蒋先军, 黄昭贤, 谢德体, 杨剑虹. 硅酸盐细菌代谢产物对植物生长的促进作用[J]. 西南农业大学学报, 2000, 22 (2): 116-119 [Jiang XJ, Huang ZX, Xie DT, Yang JH. Promoting effects of the metabolites of silicate for plant growth [J]. J Sw Agric Univ, 2000, 22 (2): 116-119]
11 亚力山罗夫著. 硅酸盐细菌[M]. 叶维青译. 北京: 科学出版社, 1955 [Alexandrov. Silicate Bacteria [M]. Ye WQ trans. Beijing: Science Press, 1955]
12 张梦旭, 杨少峰, 曾凡海, 游连尉, 田劲松, 熊承飞, 古力, 张重义. 钾细菌的解钾机制及在烟草生产上的应用[J]. 福建农林大学学报(自然科学版), 2017, 4 (46): 373-378 [Zhang MX, Yang SF, Zeng FH, You LW, Tian JS, Xiong CF, Gu L, Zhang ZY. Potassium-releasing mechanism of potassium solubilizing bacteria and its application on tobacco production [J]. J Fujian Agric Fores Univ (Nat Sci Ed), 2017, 4 (46): 373-378]
13 连宾, 傅平秋, 莫德明, 刘丛强. 硅酸盐细菌解钾作用机理的综合效应 [J]. 矿物学报, 2002, 2 (22): 179-183 [Lian B, Fu PQ, Mo DM, Liu CQ. A comprehensive review of the mechanism of potassium releasing by silicate bateria [J]. Acta Mineral Sin, 2002, 2 (22):179-183]
14 Tanja K, Ralph J, Eva O, Claes-Grran G. Silver-based crystalline nanoparticles, microbially fabricated [J]. Proc Natl Acad Sci USA, 1999, 96 (24): 1361l-13614
15 Hassan E, Somayeh E, Hossein AA. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects - a review [J]. J Soil Sci Plant Nutr, 2017, 17 (4): 897-911
16 Yu XM, Li YM, Zhang C, Liu H, Liu J, Zheng WW, Kang X, Leng XJ, Zhao K, Gu YF, Zhang XP, Xiang QJ, Chen Q. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China [J]. PLoS ONE, 2014, 9 (9): e106618
17 袁红莉, 王贺祥. 农业微生物学及实验教程[M]. 北京: 中国农业大学出版社, 2009: 470 [Yuan HL, Wang HX. Agricultural Microbiology and Experiment Tutorial [M]. Beijing: China Agricultural University Press, 2009: 470]
18 吴凡, 刘训理, 张楠, 张莎莎, 国辉, 张本峰, 仇念全. 桑树根际硅酸盐细菌的分离鉴定及解钾能力测定[J]. 蚕业科学, 2010, 36 (2): 323-329 [Wu F, Liu XL, Zhang N, Zhang SS, Guo H, Zhang BF, Qiu NQ. Isolation and identification of mulberry rhizospheric silicate bacteria and determination of their potassium-releasing activities [J]. Sci Seri, 2010, 36 (2): 323-329]
19 姜霁航, 彭霞薇, 颜振鑫, 何不为, 朱昌雄, 国辉, 耿兵. 苹果树根际高效解钾菌的筛选及鉴定[J]. 中国农业气象, 2017, 38 (11): 738-748 [Jiang JH, Peng XW, Yan ZX, He BW, Zhu CX, Guo H, Geng B. Isolation and identification of potassium-solubilizing bacteria from rhizosphere soil of apple tree [J]. Chin J Agrom, 2017, 38 (11): 738-748]
20 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 302-316 [Lu RK. Soil Agricultural Chemical Analysis Method [M]. Beijing: Chinese Agricultural Science and Technology Press, 2000: 302-316]
21 陈强, 张小平, 李登煜, 陈文新, Lindatrm K, Terefewor Z. 从豆科植物的根瘤中直接提取根瘤菌DNA的方法[J]. 微生物学通报, 2002, 29 (6): 63-67 [Chen Q, Zhang XP, Li DY, Chen WX, Lindatrm K, Terefewor Z. Isolation of DNA from the root nodule of legume plant [J]. Acta Microbiol Sin, 2002, 29 (6): 63-67]
22 Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Appl Environ Microbiol, 1996, 62 (2): 625-630
23 Wang ZG, Yang WJ, Sun LH, Zhu BJ, Li DH, Liu CL. Characterization of a neutral protease gene of Bacillus subtilis isolated from the guts of Bombyx mori [J]. Pakis J Zool, 2016, 48 (1): 179-185
24 Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) [J]. Theor Appl Genet, 2000, 100 (5): 713-722
25 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28 (10): 2731-2739
26 付骁, 蒋代华, 崔俊峰, 王晶. 矿区重金属污染土壤中铅镉抗性细菌的筛选及其活化作用研究[J]. 广西农业科学, 2010, 41 (2): 153-155 [Fu X, Jiang DH, Cui JF, Wang J. Screening of bacteria resistant to heavy metal contaminated soil in cadmium-lead mining area and their effects on activation of cadmium-lead [J]. Guangxi Agric Sci, 2010, 41 (2): 153-155]
27 Bakhshandeh E, Pirdashti H, Lendeh KS. Phosphate and potassium-solubilizing bacteria effect on the growth of rice [J]. Ecol Eng, 2017, 103: 164-169
28 Bhattacharya S, Bachani P, Jain D, Patidar SK, Mishra S. Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli (MTCC 5918) isolated from the experimental salt farm [J]. Int J Min Proc, 2016, 152: 53-57
29 Glick BR. Plant growth-promoting bacteria: mechanisms and applications [J]. Scientifica, 2012 (5): 963401
30 刘晓璐, 刘永智, 郭涛, 吕乐. 许倩倩, 尹春华, 李慧梅, 闰海. 解钾细菌的筛选、鉴定以及高效培养[J]. 北京科技大学学报, 2013, 35 (4): 552-557 [Liu XX, Liu YZ, Guo T, Lü L, Xu QQ, Yin CH, Li HM, Run H. Isolation, identification and high-efficiency culvation of potassium-releasing bacteria [J]. J Univ Sci Technol Beijing, 2013, 35 (4): 552-557]
31 张成省, 陈雪, 张玉芹, 刘璇, 游偲, 孔凡玉, 王静. 烟草根际土壤中解钾细菌的分离与多样性分析[J]. 中国生态农业学报, 2013, 21 (6): 737-743 [Zhang CS, Chen X, Zhang YQ, Liu X, You C, Kong FY, Wang J. Diversity and isolation of potassium solubilizing bacteria in tobacco rhizosphere soils [J]. Chin J Eco-agric, 2013, 21 (6): 737-743]
32 Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology [J]. Int J System Evol Microbiol, 1994, 44 (4): 846-849
33 陈易, 程永毅, 郭涛, 申鸿. 一株具紫色土亲和性解钾菌的筛选及促生效应[J]. 西南大学学报(自然科学版), 2016, 5 (38): 1-8 [ChenY, Cheng YY, Guo T, Shen H. Screening and identification of a potassium-solubilizing bacterium strain with affinity for purplish soil and its plant-promoting effects [J]. J SW Univ (Nat Sci Ed), 2016, 5 (38): 1-8]
34 李凤汀, 郝正然, 杨则瑗, 张春莉. 硅酸盐细菌HM8841菌株解钾作用的研究[J]. 微生物学报, 1997, 37 (1): 79-81 [Li FT, Hao ZR, Yang ZY, Zhang CL. Studies on the ability of silicate bacteria HM8841 strain dissolving potassium [J]. Acta Microbiol Sin, 1997, 37 (1): 79-81]
35 Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. Characterization of heavy metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape [J]. Environ Pollut, 2008, 156: 1164-1170
36 马莹, 骆永明, 滕应, 李振高. 根际促生菌及其在污染土壤植物修复中的应用[J]. 土壤学报, 2013, 50 (5): 1022-1031 [Ma Y, Luo YM, Teng Y, Li ZG. Plant growth promoting rhizobacteria and their role in phytoremediation of heavy metal contaminated soil [J]. Acta Pedolo Sin, 2013, 50 (5): 1022-1031]
37 Wu SC, Cheung KC, Luo YM, Wong MH. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea [J]. Environ Pollut, 2006, 140: 124-135

相似文献/References:

[1]夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(03):289.
 Xia Hanping.STUDIES ON CADMIUM IN SOIL-PLANT SYSTEM[J].Chinese Journal of Applied & Environmental Biology,1997,3(01):289.
[2]白红娟,张肇铭,李保珍,等.固定化球形红细菌去除镉的动力学及其与质粒的关系[J].应用与环境生物学报,2008,14(02):249.
 BAI Hongjuan,et al..Kinetics of Cadmium Removal by Immobilized Rhodobacter sphaeroides and Its Relation with Plasmid[J].Chinese Journal of Applied & Environmental Biology,2008,14(01):249.
[3]段学军** 黄春晓.重金属镉对水田土壤微生物基因多样性的影响[J].应用与环境生物学报,2008,14(04):510.
[4]潘响亮,张道勇,黄承琳.向日葵根分泌物对水合铁氧化物(HFO)吸附Cd2+的促进效应[J].应用与环境生物学报,2010,16(01):33.[doi:10.3724/SP.J.1145.2010.00033]
 HUANG Chengling,ZHANG Daoyong,PAN Xiangliang.Enhanced Adsorption of Cd2+ to HFO by Root Exudates from Helianthus annuus[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):33.[doi:10.3724/SP.J.1145.2010.00033]
[5]赵晶,冯文强,秦鱼生,等.不同氮肥对小麦吸收镉的影响*[J].应用与环境生物学报,2010,16(01):58.[doi:10.3724/SP.J.1145.2010.00058]
 ZHAO Jing,FENG Wenqiang,QIN Yusheng,et al.Effects of Different Nitrogen Fertilizers on Cadmium Uptake by Wheat*[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):58.[doi:10.3724/SP.J.1145.2010.00058]
[6]李凝玉,卢焕萍,李志安,等.籽粒苋对土壤中镉的耐性及积累特征研究[J].应用与环境生物学报,2010,16(01):28.[doi:10.3724/SP.J.1145.2010.00028]
 LI Ningyu,LU Huanping,LI Zhian,et al.Cadmium tolerance and accumulation in Amaranthus hypochondriacus L.[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):28.[doi:10.3724/SP.J.1145.2010.00028]
[7]曹哲明,杨健.不同浓度Cd2+对鲤鱼基因组DNA的影响[J].应用与环境生物学报,2010,16(04):457.[doi:10.3724/SP.J.1145.2010.00457]
 CAO Zheming,YANG Jian.Effect of Cadmium at Different Concentrations on Genomic DNA of Common Carps[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):457.[doi:10.3724/SP.J.1145.2010.00457]
[8]湛方栋,何永美,李元,等.云南会泽废弃铅锌矿区和非矿区小花南芥根际真菌的耐镉性[J].应用与环境生物学报,2010,16(04):572.[doi:10.3724/SP.J.1145.2010.00572]
 ZHAN Fangdong,HE Yongmei,LI Yuan,et al.Cadmium Tolerance of Rhizosphere Fungi of Arabis alpina in Abandoned Lead-zinc Mining and Non-mining Area in Huize, Yunnan, China[J].Chinese Journal of Applied & Environmental Biology,2010,16(01):572.[doi:10.3724/SP.J.1145.2010.00572]
[9]王萌,龚双姣,刘珊珊,等.表面活性剂对沉积物中纳米TiO2与Cd单一及复合污染生态毒理学效应的影响[J].应用与环境生物学报,2015,21(05):791.[doi:10.3724/SP.J.1145.2015.07034]
 WANG Meng,GONG Shuangjiao,LIU Shanshan,et al.Impacts of surfactants on the ecotoxicological effects of TiO2-NP and/or Cd contamination in sediments[J].Chinese Journal of Applied & Environmental Biology,2015,21(01):791.[doi:10.3724/SP.J.1145.2015.07034]
[10]周伟,邓良基,邓欧平,等.成都平原菌渣还田土壤镉铅含量变化和环境容量[J].应用与环境生物学报,2017,23(04):701.[doi: 10.3724/SP.J.1145.2016.08038]
 ZHOU Wei,DENG Liangji**,DENG Ouping,et al.Isolation and identification of dicamba-degrading bacterium Ochrobactrum sp. 3-3 and investigation of its degradation characteristics[J].Chinese Journal of Applied & Environmental Biology,2017,23(01):701.[doi: 10.3724/SP.J.1145.2016.08038]

更新日期/Last Update: 2019-02-25