|本期目录/Table of Contents|

[1]涂德辉,李德强,宋诗昀,等.水稻砷耐性差异及砷高耐性材料的筛选[J].应用与环境生物学报,2018,24(05):1065-1072.[doi:10.19675/j.cnki.1006-687x.2018.04046]
 TU Dehui,LI Deqiang,SONG Shiyun,et al.Differences in arsenic tolerance and screening of high arsenic-tolerant materials of rice (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1065-1072.[doi:10.19675/j.cnki.1006-687x.2018.04046]
点击复制

水稻砷耐性差异及砷高耐性材料的筛选()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1065-1072
栏目:
研究论文
出版日期:
2018-10-25

文章信息/Info

Title:
Differences in arsenic tolerance and screening of high arsenic-tolerant materials of rice (Oryza sativa L.)
作者:
涂德辉李德强宋诗昀黄富张兰陈光登
1四川农业大学资源学院 成都 611130 2四川农业大学农学院生态农业研究所 成都 611130 3成都土壤肥料测试中心 成都 610041
Author(s):
TU Dehui1 LI Deqiang2 SONG Shiyun1 HUANG Fu2 ZHANG Lan3 & CHEN Guangdeng1**
1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China 2 Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China 3 Detection Center for Soil and Fertilizer of Chengdu, Chengdu 610041 , China
关键词:
水稻耐性指数砷含量砷积累量
Keywords:
rice (Oryza sativa L.) tolerance index arsenic content arsenic accumulation
分类号:
S511
DOI:
10.19675/j.cnki.1006-687x.2018.04046
摘要:
为探讨不同水稻材料对砷吸收、积累的差异性,聚类筛选获取砷高耐性材料,以85份水稻亲本材料为研究对象,通过水培实验,分析砷处理下不同水稻植株生长性状和砷积累特征,比较不同水稻材料的砷耐性和砷积累量差异,并以3种耐性指数为指标,综合筛选砷高耐性材料. 结果表明:(1)与对照相比,砷处理下水稻的生物量、总根长和株高受到不同程度的抑制. 水稻地上部砷含量和积累量在2 mg/L 砷处理下最大值分别是最小值的7.41倍和18.21倍,而在8 mg/L 砷处理下最大值分别是最小值的10.01倍和49.90倍,说明材料间耐性差异显著,有利于砷高耐性水稻材料的筛选. (2)综合3种耐性指数进行聚类分析,得到华航35号、五山丰占、蒲江抗源-5-2、CHETUMALA-86、雅康2A和雅康3A等6种砷高耐性材料以及雅恢2119、Wxj-74、Wxj-380、MR183-2和IR28153等5种砷低耐性材料. 在2 mg/L 砷处理下,砷低耐性材料平均砷含量、积累量和生物量分别为高耐性材料的3.11、1.71和0.49倍,8 mg/L 砷处理下,砷低耐性材料分别为高耐性材料的1.85、1.34和0.77倍,说明高耐性材料较低耐性材料能更好适应砷胁迫. (3)高砷浓度处理下的水稻地上部平均砷含量和积累量显著高于低砷浓度处理;两类耐性水稻材料在砷处理下地上部平均砷含量、积累量和生物量差异显著,表现为高耐性材料平均砷含量、积累量显著低于低耐性材料,而生物量显著高于低耐性材料. 综上所述,通过不同砷浓度处理,根据耐性指数差异进行聚类,得到6种砷高耐性材料,可作为砷抗性育种的亲本材料,可为中轻度砷污染农田水稻生产提供砷耐性种质资源. (图2 表4 参39)
Abstract:
In order to investigate the differences in arsenic absorption and accumulation by different rice materials, materials showing high arsensic tolerance, which could further be used for the further cultivation of arsenic tolerance varieties, were selected through cluster screening. The characteristics of plant growth and arsenic accumulation were investigated through the hydroponic culture of 85 parental rice materials showing significant genetic differences. Arsenic tolerance and accumulation of different materials were compared, and rice germplasms with high tolerance for arsenic were identified according to three arsenic-tolerance indices. The results indicated that: (1) Compared with the control group, the dry weight (DW), total root length (RL), and plant height (PH) of rice materials were inhibited to different degrees under the stress of arsenic ions. The maximum values of arsenic content and accumulation in rice were 7.41 times and 18.21 times those observed under 2 mg/L arsenic treatment, and 10.01 times and 49.90 times those observed under 8 mg/L arsenic treatment, respectively. (2) Six high arsenic-tolerance materials (Huahang35, Wushanfengzhan, Pujiangkangyuan-5-2, CHETUMALA-86, Yakang2A, and Yakang3A), and five low arsenic-tolerance materials (Yahui2119, Wxj-74, Wxj-380, MR183-2, and IR28153) were obtained according to the clustering of three tolerance indices. The average arsenic content, accumulation, and biomass of low arsenic-tolerant materials under 2 mg/L arsenic treatment were 3.11, 1.71, and 0.49 times those of high arsenic-tolerance materials, respectively. The average arsenic content, accumulation, and biomass of low arsenic-tolerant materials under 8 mg/L arsenic treatment were 1.85, 1.34, and 0.77 times those of high arsenic-tolerance materials, respectively. This indicated that high arsenic-tolerance materials were better adapted to arsenic stress. (3) The average arsenic content and accumulation in the aboveground part of rice plants under high concentration of arsenic treatment were significantly higher than under low arsenic concentration treatment. The average arsenic content, accumulation, and biomass in the aboveground parts of two tolerant rice materials under arsenic treatment were significantly different; the average arsenic content and accumulation of the high-tolerance materials was significantly lower than those of the low-tolerance materials, while the biomass was significantly higher. In conclusion, six high arsenic-tolerance materials were obtained by cluster-screening according to the tolerance indices under different concentrations of arsenic treatment. These could be used as parent materials for creating an arsenic-resistant rice germplasm for the cultivation of rice on mild and moderately arsenic-contaminated farmlands.

参考文献/References:

1. 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36 (5): 101 [Ministry of Environmental Protection, Ministry of Land and Resources. National survey of soil pollution status [J]. China Environ Prot Ind, 2014, 36 (5): 101]
2. 黄亚涛. 我国稻米中无机砷的污染分布研究及风险评估[D]. 北京: 中国农业科学院, 2014 [Huang YT. Study on contamination distribution of inorganic arsenic in rice from China and the associated risk assessment [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014]
3. Meharg AA, Zhao FJ. Sources and losses of arsenic to paddy fields [J]. Arsenic Rice, 2012, 35: 51-69
4. Williams PN, Raab A, Feldmann J, Meharg AA. Market basket survey shows elevated levels of as in South Central US processed rice compared to California: consequences for human dietary exposure [J]. Environ Sci Technol, 2007, 41: 2178-2183
5. ?ngel A. Carbonell-Barrachina, Wu X, Ramírez-Gandolfo A. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA [J]. Environ Pollut, 2012, 163 (4): 77-83
6. 胡拥军, 王海娟, 王宏镔, 杨晓燕, 李燕燕, 殷飞. 砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J]. 生态学报, 2015, 35 (10): 3214-3224 [ Hu YJ, Wang HJ, Wang HB, Yang XY, Li YY, Yin F. The relationship between endogenous auxin and antioxidative enzymes in two plants with different arsenic-accumulative ability under arsenic stress [J]. Acta Ecol Sin, 2015, 35 (10): 3214-3224]
7. 李莲芳, 曾希柏, 白玲玉, 李树辉. 石门雄黄矿周边地区土壤砷分布及农产品健康风险评估[J]. 应用生态学报, 2010, 21 (11): 2946-2951 [Li L F, Zeng X B, Bai L Y, SH Li. Soil arsenic content and its health risk assessment for agricultural products in the region surrounding Shimen arsenic sulphide mine [J]. Chin J Appl Ecol, 2010, 21 (11): 2946-2951]
8. Zhao ST, Li HC, Shi YH. Speciation analysis of antimony and arsenic in soil and remediation of antimony and arsenic in contaminated soils [J]. Adv Mater Res, 2015, 1088: 578-582
9. Chen J, Wang S, Zhang S. Arsenic pollution and its treatment in Yangzonghai lake in China: In situ remediation [J]. Ecotoxicol Environ Saf, 2015, 122: 178
10. Klaber NS, Barker AV. Accumulation of phosphorus and arsenic in two perennial grasses for soil remediation [J]. Commun Soil Sci Plant, 2014, 45 (6): 810-818
11. 申红玲, 何振艳, 麻密. 蜈蚣草砷超富集机制及其在砷污染修复中的应用[J]. 植物生理学报, 2014 (5): 591-598 [Shen HL, He ZY, Ma M. Advance of the mechanisms of arsenic hyperaccumulation in Pteris vittata L. and applications for arsenic-remediation [J]. Plant Physiol Commun, 2014 (5): 591-598]
12. Hu P, Li Z, Yuan C, Zhou L, Huang J, Huang Y, Lou Y, Wu L. Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities [J]. J Soil Sediment, 2013, 13 (5): 916-924
13. Ahmed I, Chowdhury MAH, Islam MT. Evaluation of different rice varieties against arsenic toxicity in germination and seedling growth [J]. Int J Agric Biol, 2014, 4: 1-6
14. 赵天宏, 裴超, 赵艺欣, 曹莹, 郭俊, 马殿荣. 砷胁迫对超级稻根系保护酶活性和渗透调节物质的影响[J]. 华北农学报, 2012, 27 (2): 15256 [Zhao TH, Pei C, Zhao YX, Cao Y, Guo J, Ma DR. Effects on protective enzymes and osmotic regulation substances to arsenic stress in super rice roots [J]. Acta Agric Bor-Sin, 2012, 27 (2): 15256]
15. 邢轶兰, 杨俊兴, 郑国砥, 周小勇, 万小铭, 杨军, 徐汭祥, 邸利, 刘志彦, 陈桂珠, 曹柳, 卢一富. 复合污染土壤中水稻根际元素特性及效应研究[J]. 植物营养与肥料学报, 2016, 22 (3): 719-728 [Xing TL, Yang JX, Zhen GD, Zhou XY, Wan XM, Yang J, Xu RX, Di L, Liu ZY, Chen GZ, Cao L, Lu YF. Characteristics and impacts of elements in rhizosphere in multiple heavy metals polluted rice paddy soil [J]. J Plant Nutr Fertl, 2016, 22 (3): 719-728]
16. Lin SC, Chang TK, Huang WD, Lur HS, Shyu GS. Accumulation of arsenic in rice plant: a study of an arsenic-contaminated site in Taiwan [J]. Paddy Water Environ, 2015, 13 (1): 118
17. Md. Halim A, Ghosh M, Nigar M, Hossain F, Akhter N. Screening of arsenic tolerance in rice at germination and early seedling stage as influenced by sodium arsenate [J]. J Biol Sci, 2016, 3 (1): 17-26
18. Syed MA, Iftekharuddaula KM, Mian MAK. Main effect QTLs associated with arsenic phyto-toxicity tolerance at seedling stage in rice (Oryza sativa L.) [J]. Euphytica, 2016, 209 (3): 805-814
19. Adhikari B, Bag MK, Tripathi RD. Screening and selection of low grain arsenic (As) accumulating rice germplasms under West Bengal condition [J]. J Crop Weed, 2009, 5: 254-257
20. Adhikari B, Mukherjee M, Bhowmick MK, Tripathi RD, Dwivedi S, Chakraborty D. Arsenic affects micronutrient content of different rice seeds grown in contaminated areas of West Bengal [J]. Satsa Mukhaptra Annu Tech Issue, 2013, 17: 90-99
21. Devenda SK, Singh K, Singh D, Kaur P. Screening of basmati rice varieties for their arsenic accumulation in Punjab, North-West India [J]. Commun Soil Sci Plant Anal, 2017, 48 (20): 2381-2389
22. Nath S. Molecular Physiology of Arsenic As Stress in Rice (Oryza sativa L.) [M]. Assam: Silchar, 2015: 12832
23. 冯文强, 涂仕华, 秦鱼生, 熊洪, 徐富贤, 孙锡发, 廖鸣兰. 水稻不同材料对铅镉吸收能力差异的研究[J]. 农业环境科学学报, 2008, 27 (2): 447-451 [Feng WQ, Tu SH, Qin YS, Xiong H, Xu FX, Sun XF, Liao ML. Uptake capacity of differ ent rice genotypes for lead and cadmium from soil [J]. J Agro-Environ Sci, 2008, 27 (2): 447-451]
24. 范中亮, 季辉, 杨菲, 吴琦, 张卫建. 不同土壤类型下Cd和Pb在水稻籽粒中累积特征及其环境安全临界值[J]. 生态环境学报, 2010, 19 (4): 792-797 [Fan ZL, Ji H, YF, Wu Qi, Zhang WJ. Accumulation characteristics of Cd and Pb in rice grain and their security threshold values in paddy field under different soil types [J]. Ecol Environ Sci, 2010, 19 (4): 792-797]
25. 陈菲. 水稻低砷品种的筛选以及OsPTR7基因功能的鉴定[D]. 南京: 南京农业大学, 2016 [Chen F. Screening rice cultivars with low arsenic accumulation and functional study of OsPTR7 gene [D]. Nanjing: Nanjing Agricultural University, 2016]
26. 竺朝娜. 水稻砷、镉、铅低含量材料筛选及体内转运特征[D]. 杭州: 浙江师范大学, 2010: 17-36 [Zhu CN. Studies on screening for genotypes with low concentration of As, Cd, Pb and it’s trantsportation in rice (Oryza sativa L. ) [D]. Hangzhou: Zhejiang Normal University, 2010: 17-36]
27. Yoshida S, Forno DA, Cock JH. Laboratory Manual for Physiological Studies of Rice [M]. Los Baos, Philippines: International Rice Research Institute, 1976: 62-63
28. Choi SH, Kim JS, Ji YL. Analysis of arsenic in rice grains using ICP-MS and fs LA-ICP-MS [J]. J Anal Atom Spectrom, 2014, 29 (7): 1233237
29. 谈宇荣, 徐晓燕, 丁永祯, 郑向群, 戴礼洪, 冯人伟, 师荣光, 周莉, 陈昢圳, 杨波. 旱稻吸收砷镉的材料差异研究[J]. 农业环境科学学报, 2016, 35 (8): 1436443 [Tang YR, Xu XY, Ding YZ, Zheng XQ, Dai LH, Feng RW, Shi GR, Zhou L, Chen PZ, Yang B. Genotypic variation of arsenic and cadmium uptake by upland rice [J]. J Agro-Environ Sci, 2016, 35 (8): 1436443]
30. Hu P, Ouyang Y, Wu L, Shen L, Lou Y, Peter Christie. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar [J]. J Environ Sci, 2015, 27 (1): 225-230
31. Begum MC, Islam MS, Islam M. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L. ) [J]. Plant Physiol Biochem, 2016, 104: 266-277
32. 董飞, 卢瑛, 王兴祥, 闫秋艳, 张琳, 潘琦. 华南地区不同品系水稻积累砷特征及其影响因素[J]. 农业环境科学学报, 2011, 30 (2): 214-219 [Dong F, Lu Y, Wang XX, Yan QY, Zhang L, Pan Q. Characteristics of arsenic accumulation in different rice (Oryza sativa L. ) cultivars and its influencing factors in South China [J]. J Agro-Environ Sci, 2011, 30 (2): 214-219]
33. Zhou H, Zeng M, Zhou X, Peng P, Hu M, Wu Y, Zou Z. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice ( Oryza sativa L.) cultivars [J]. Plant Soil, 2015, 386 (1): 317-329
34. Gaikwad DJ. Physiological and biochemical impact of arsenate and arsenite during germination, early seedling growth and grain filling period of rice [J]. Environ Sci Technol, 2012, 44: 8513-8520
35. Rahman MM, Rahman MA, Maki T, Hasegawa H. Phytotoxicity of arsenate and salinity on Early seedling growth of rice (Oryza sativa L.): A threat to sustainable rice cultivation in south and south-east Asia [J]. Bull Environ Contam Toxicol, 2012, 88 (5): 695
36. Bhattacharya S, Sarkar ND, Banerjee P, Banerjee S, Mukherjee S, Chattopadhyay D, Mukhopadhyay A. Effects of arsenic toxicity on germination, seedling growth and peroxidase activity in Cicer arietinum [J]. Agric Food Sci, 2013, 2012 (2): 13137
37. 李凯明, 史晓飒, 杨俊杰, 王伊蕊, 张子龙. 砷对三七种子萌发及幼苗生长的影响[J]. 现代中药研究与实践, 2015, 29 (6): 4-6 [Li KM, Shi XS, Yang JJ, Wang YR, Zhang ZL. Effects of arsenic on seed germination and seedling growth of panax notoginseng [J]. Res Pract Chin Med, 2015, 29 (6): 4-6]
38. Wu C, Ye Z, Shu W, Zhu Y, Wong M. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes [J]. J Exp Bot, 2011, 62 (8): 2889
39. Tripathi P, Singh RP, Tripathi RD. Arsenic Tolerance and Susceptibility Mechanism in Rice Plants [M]. Germany: LAP Lambert Academic Publishing, 2015: 659-666
40.

相似文献/References:

[1]闵航,陈美慈,钱泽澍.水田中水稻、稗草和异型莎草甲烷排放的生物学特性[J].应用与环境生物学报,1995,1(02):114.
 Min Hang,Chen Meici,Qian Zheshu.BIOLOGICAL CHARACTERISTICS OF METHANE EMISSION THROUGH ORYZA SATIVA,PANICUM CRUS-GALLI AND CYPERUS DIFFORMIS GROWING IN PADDY SOIL[J].Chinese Journal of Applied & Environmental Biology,1995,1(05):114.
[2]吴照辉,贺立源,严昶,等.低磷胁迫对水稻地上部钙、镁吸收和积累的影响[J].应用与环境生物学报,2009,15(03):295.[doi:10.3724/SP.J.1145.2009.00295]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Calcium and Magnesium Absorption and Accumulation in Rice Shoot[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):295.[doi:10.3724/SP.J.1145.2009.00295]
[3]郭再华,孟萌,侯彦琳.磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响[J].应用与环境生物学报,2009,15(05):596.[doi:10.3724/SP.J.1145.2009.00596]
 GUO Zaihua,MENG Meng & HOU Yanlin.Effect of P and As Couple Stress on Growth, and P and As Absorption of Different P-tolerant Rice Seedlings[J].Chinese Journal of Applied & Environmental Biology,2009,15(05):596.[doi:10.3724/SP.J.1145.2009.00596]
[4]王志春,杨福,齐春艳.盐碱胁迫对水稻花粉扫描特征和生活力的影响[J].应用与环境生物学报,2010,16(01):63.[doi:10.3724/SP.J.1145.2010.00063]
 WANG Zhichun,YANG Fu,QI Chunyan.Effects of Salinity and Sodicity Stresses on Pollen Surface Characteristics and Viability of Rice[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):63.[doi:10.3724/SP.J.1145.2010.00063]
[5]吴照辉,贺立源,严昶,等.低磷胁迫对水稻铁、锰吸收和积累的影响[J].应用与环境生物学报,2010,16(02):185.[doi:10.3724/SP.J.1145.2010.00185]
 WU Zhaohui,HE Liyuan,YAN Chang,et al.Effect of Low Phosphorus Stress on Fe and Mn Absorption and Accumulation by Rice Shoots[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):185.[doi:10.3724/SP.J.1145.2010.00185]
[6]于敏,王文国,王胜华,等.外源柠檬酸对水稻铜毒害的缓解效应[J].应用与环境生物学报,2010,16(05):617.[doi:10.3724/SP.J.1145.2010.00617]
 YU Min,WANG Wenguo,WANG Shenghua,et al.Alleviative Effect of Exogenous Citric Acid on Rice under Copper Toxicity[J].Chinese Journal of Applied & Environmental Biology,2010,16(05):617.[doi:10.3724/SP.J.1145.2010.00617]
[7]罗晓莉,牛向丽,黄维藻,等.水稻DDB1基因的表达特性及功能分析[J].应用与环境生物学报,2011,17(01):1.[doi:10.3724/SP.J.1145.2011.00001]
 LUO Xiaoli,NIU Xiangli,HUANG Weizao,et al.Expression Characteristics and Functional Analysis of Rice DDB1 Gene[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):1.[doi:10.3724/SP.J.1145.2011.00001]
[8]应兴华,欧阳由男,徐霞,等.三唑磷降解对水稻叶绿素含量的影响[J].应用与环境生物学报,2011,17(02):211.[doi:10.3724/SP.J.1145.2011.00211]
 YING Xinghua,OUYANG Younan,XU Xia,et al.Effect of Triazophos Degradation on Chlorophyll Content in Rice (Oryza sativa L.) and Their Correlation Study[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):211.[doi:10.3724/SP.J.1145.2011.00211]
[9]刘红江,陈留根,朱普平,等.农田施用水葫芦对水稻干物质生产与分配的影响[J].应用与环境生物学报,2011,17(04):521.[doi:10.3724/SP.J.1145.2011.00521]
 LIU Hongjiang,CHEN Liugen,ZHU Puping,et al.Effects of Hyacinth Mulching on Dry Matter Production and Distribution of Rice (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):521.[doi:10.3724/SP.J.1145.2011.00521]
[10]盛婧,刘红江,陈留根,等.农田施用水葫芦对水稻磷素吸收利用的影响[J].应用与环境生物学报,2011,17(06):803.[doi:10.3724/SP.J.1145.2011.00803]
 SHENG Jing,LIU Hongjiang,CHEN Liugen,et al.Effect of Hyacinth Mulching on Uptake and Utilization of Phosphorus by Rice Plant (Oryza sativa L.)[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):803.[doi:10.3724/SP.J.1145.2011.00803]
[11]涂德辉李德强宋诗昀黄 富陈光登**.水稻砷耐性差异及砷高耐性材料筛选*[J].应用与环境生物学报,2019,25(01):1.[doi:10.19675/j.cnki.1006-687x.2018.04046]
 TU Dehui,LI Deqiang,SONG Shiyun,et al.Differences of arsenic tolerance and screening of high arsenic-tolerant material in Rice (Oryza sativa L.) *[J].Chinese Journal of Applied & Environmental Biology,2019,25(05):1.[doi:10.19675/j.cnki.1006-687x.2018.04046]

更新日期/Last Update: 2018-10-25