|本期目录/Table of Contents|

[1]井大炜,王明友,马海林,等.断根对杨树切口处细根序级结构与形态特征的影响[J].应用与环境生物学报,2018,24(05):1146-1151.[doi:10.19675/j.cnki.1006-687x.2017.07014]
 JING Dawei,WANG Mingyou**,MA Hailin,et al.Effect of root pruning on the architecture and morphological characteristics of different fine root orders in the incision of poplar trees[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):1146-1151.[doi:10.19675/j.cnki.1006-687x.2017.07014]
点击复制

断根对杨树切口处细根序级结构与形态特征的影响()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年05期
页码:
1146-1151
栏目:
研究论文
出版日期:
2018-10-25

文章信息/Info

Title:
Effect of root pruning on the architecture and morphological characteristics of different fine root orders in the incision of poplar trees
作者:
井大炜王明友马海林杜振宇刘方春董玉峰
1德州学院资源环境与规划学院 德州 253023 2德州学院生态与园林建筑学院 德州 253023 3山东省林业科学研究院 济南 250014
Author(s):
JING Dawei1 WANG Mingyou2** MA Hailin3 DU Zhenyu3 LIU Fangchun3 & DONG Yufeng3
1 College of Resource, Environment and Planning, Dezhou University, Dezhou 253023, China 2 College of Ecology and Landscape Architecture, Dezhou University, Dezhou 253023, China 3 Shandong Academy of Forestry, Jinan 250014, China
关键词:
欧美I-107杨断根细根根序形态特征
Keywords:
Populus euramericana ‘Neva’ root pruning fine root root order morphological characteristics
分类号:
S792.110.5
DOI:
10.19675/j.cnki.1006-687x.2017.07014
摘要:
为探讨断根对欧美I-107杨切口处细根序级结构和形态特征的作用效果,通过大田试验,研究4-2(4倍胸径两侧)、6-2(6倍胸径两侧)、8-2(8倍胸径两侧)、10-2(10倍胸径两侧)和12-2(12倍胸径两侧)等不同断根处理对杨树切口处1-5级根的分支比例、直径、根长和比根长的影响. 结果表明,同对照(未断根)相比,各断根处理的细根不同序级分支比例均呈升高的趋势,其中8-2处理的各分支比例均显著高于其他处理. 随着根序的升高,各处理的细根直径和根长逐渐增大,而比根长却减小. 在断根处理中,8-2处理1-2级根的直径和根长最小、比根长最大,而3-5级根的直径和根长最大、比根长最小,并均与其他处理差异达显著水平;4-2、6-2、10-2和12-2处理1-2级根之间的直径、根长和比根长均无显著性差异;而4-2和12-2处理3-5级根的直径和根长显著小于6-2和10-2处理,比根长则显著高于6-2和10-2处理. 此外,8-2处理的材积平均生长率显著高于其他处理. 综上,断根强度对杨树切口处不同根序细根的分支结构和形态特征具有显著的影响,其中8-2处理更利于切口处细根的萌发,并能显著增强根系的吸收能力与运输功能,进而有助于促进林木的生长;本研究结果可为杨树人工林的高产栽培提供技术参考. (图2 表1 参29)
Abstract:
This study investigated the effects of root pruning on the architecture and morphological characteristics of different fine root orders in the incision of Populus euramericana ‘Neva.’ A field experiment was designed and performed. The root systems of five-year-old poplars were manually pruned with a sharp spade at four (4-2), six (6-2), eight (8-2), ten (10-2), and twelve (12-2) times the diameter at breast height (DBH) respectively, along both inter-row sides, to investigate the effects of different root pruning treatments on branching ratios, diameter, length, and specific root length of the first five root orders in poplar incision. The results showed that in comparison with the unpruned control (CK), each root pruning treatment caused an increase in the branching ratios of fine root orders, which were highest in roots under the 8-2 treatment. With the increase of root order, root diameter and length increased gradually, while the specific root length decreased. The root diameter and length of the first two orders of 8-2 treated roots were the lowest, and the specific root length was the highest in the same group. However, a reverse trend was observed from the third to fifth root orders; all of which showed statistically significant differences in characteristics compared with the other treatments. There was no significant difference in root diameter, length, or specific root length among the treatments of 4-2, 6-2, 10-2, and 12-2. Root diameter and length from the third to fifth root orders under the 4-2 and 12-2 treatments were significantly lower than those of roots under the 6-2 and 10-2 treatments, whereas the specific root lengths were notably higher. Additionally, the average increase in the volume of 8-2 treated roots was significantly higher than the volume of roots under other treatments. To sum up, pruning intensity significantly affects the architecture and morphological characteristics of different branch orders of fine roots during the incision of P. euramericana ‘Neva.’ Root pruning at a distance of eight times the DBH along both inter-row sides is more beneficial to the germination of fine roots in the incision and can significantly enhance the absorption ability and transport function of root systems, thus promoting the growth of P. euramericana ‘Neva.’ This study provides technical reference for the high-yield cultivation in poplar plantations.

参考文献/References:

1 Wu Y, Wang WJ, Wang Q, Zhong ZL, Pei ZX, Wang HM, Yao YL. Impact of poplar shelterbelt plantations on surface soil properties in northeastern China [J]. Can J For Res, 2018, 48: 559-567
2 王文波, 马雪松, 董玉峰, 王华田, 王延平, 伊文慧. 杨树人工林连作与轮作土壤酚酸降解细菌群落特征及酚酸降解代谢规律[J]. 应用与环境生物学报, 2016, 22 (5): 815-822 [Wang WB, Ma XS, Dong YF, Wang HT, Wang YP, Yi WH. Community characteristics and degradation metabolism regulation of soil phenolic acid degrading bacteria in poplar plantations under continuous cropping and crop rotation [J]. Chin J Appl Environ Biol, 2016, 22 (5): 815-822]
3 Du ZY, Xing SJ, Ma BY, Liu FC, Ma HL, Wang QH. Effects of root pruning on the growth and rhizosphere soil characteristics of short-rotation closed-canopy poplar [J]. For Syst, 2012, 21: 236-246
4 井大炜. 不同栽培措施对欧美I-107杨的增长效应及作用机理研究[D]. 泰安: 山东农业大学, 2013 [Jing DW. Studies on growth promotion and relevant mechanism of different cultivation measures on poplar clone 107 (Populus euramericana cv. ‘Neva’) [D]. Tai′an: Shandong Agricultural University, 2013]
5 李夏. 根剪措施对欧美I-107杨根际土壤生物学特征的短期影响[J]. 水土保持通报, 2014, 34 (5): 202-207 [Li X. Short-term effects of root pruning on biological characteristics in rhizosphere soil of poplar clone 107 [J]. Bull Soil Water Con, 2014, 34 (5): 202-207]
6 Jing DW, Liu FC, Wang MY, Ma HL, Du ZY, Ma BY, Dong YF. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil [J]. PloS ONE, 2017, 12 (11): e0187685
7 Wang YF, Bertelsen MG, Petersen KK, Andersen MN, Liu FL. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees [J]. Agric Water Manage, 2014, 135: 84-89.
8 吴海芹. 限根栽培对苹果幼树生长发育及相关生理机制影响的研究[D]. 杨凌: 西北农林科技大学, 2017 [Wu HQ. Effects of root restriction on development and related physiological mechanisms of young apple trees [D]. Yangling: Northwest A&F University, 2017]
9 Pokharel R, Marahatt SP, Handoo ZA, Chitwood DJ. Nematode community structures in different deciduous tree fruits and grape in Colorado, USA and impact of organic peach and apple production practices [J]. Eur J Soil Biol, 2015, 67: 59-68
10 Yang SJ, Du XY, Yu Y, Zhang ZL, Sun XY, Xing SJ. Effects of root pruning on physico-chemical characteristics and biological properties of winter jujube rhizosphere soil [J]. Plant Soil Environ, 2011, 57: 493-498
11 井大炜, 邢尚军, 刘方春, 马海林, 杜振宇, 马丙尧, 于学斗, 朱亚萍. 保水剂-尿素凝胶对侧柏裸根苗细根生长和氮素利用率的影响[J]. 应用生态学报, 2016, 27 (4): 1046-1052 [Jing DW, Xing SJ, Liu FC, Ma HL, Du ZY, Ma BY, Yu XD, Zhu YP. Effects of gel made by super absorbent polymers and urea on fine root growth and nitrogen use efficiency of Platycladus orientalis bareroot seedlings [J]. Chin J Appl Ecol, 2016, 27 (4): 1046-1052]
12 苏瑾, 王迪海. 黄土区不同林龄刺槐人工林细根的衰老生理特征[J]. 生态学报, 2016, 36 (14): 4423-4429 [Su J, Wang DH. Physiological characteristics and senescence of fine roots in Robinia pseudoacacia plantations of different forest ages in the Loess Plateau [J]. Acta Ecol Sin, 2016, 36 (14): 4423-4429]
13 井大炜, 王明友, 张红, 李士平. 蚯蚓粪配施尿素对豇豆根系特征与根际土腐殖质的影响[J]. 农业机械学报, 2017, 48 (1): 212-219 [Jing DW, Wang MY, Zhang H, Li SP. Effects of vermicompost co-applied with urea on root characteristics and humus in rhizosphere soil of cowpea [J]. Trans Chin Soc Agric Mach, 2017, 48 (1): 212-219]
14 师伟, 王政权, 刘金梁, 谷加存, 郭大立. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32 (6): 1217-1226 [Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China [J]. J Plant Ecol, 2008, 32 (6): 1217-1226]
15 熊德成, 黄锦学, 杨智杰, 卢正立, 陈光水, 杨玉盛. 亚热带 6 种树种细根序级结构和形态特征[J]. 生态学报, 2012, 32 (6): 1888-1897 [Xiong DC, Huang JX, Yang ZJ, Lu ZL, Chen GS, Yang YS. Fine root architecture and morphology among different branch orders of six subtropical tree species [J]. Acta Ecol Sin, 2012, 32 (6): 1888-1897]
16 Guo DL, Mitchell RJ, Hendricks JJ. Fine root branch orders respond differentially to carbon source sink manipulations in a longleaf pine forest [J]. Oecologia, 2004, 140: 450-457
17 王艳, 钟全林, 徐朝斌, 张中瑞, 程栋梁. 短期氮磷配施对刨花楠细根形态及其土壤微生物的影响[J]. 生态学报, 2018, 38 (7): 2271-2278 [Wang Y, Zhong QL, Xu CB, Zhang ZR, Cheng DL. Effect of adding a combination of nitrogen and phosphorus on fine root morphology and soil microbes of Machilus pauhoi seedling [J]. Acta Ecol Sin, 2018, 38 (7): 2271-2278]
18 Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL. Fine root architecture of nine north American trees [J]. Ecol Monogr, 2002, 72: 293-309
19 West GB, Brown JH, Enquist BJ. A general model for the structure and allometry of plant vascular systems [J]. Nature, 1999, 400 (6745): 664-667
20 Fitter AH. Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species [J]. Plant Cell Environ, 1982, 5 (4): 313-322
21 Fahey TJ, Hughes J W. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH [J]. J Ecol, 1994, 82 (3): 533-548
22 尤健健, 张文辉, 邓磊, 余碧云, 李罡, 何婷, 樊蓉蓉. 间伐对黄龙山油松中龄林细根空间分布和形态特征的影响[J]. 生态学报, 2017, 37 (9): 3065-3073 [You JJ, Zhang WH, Deng L, Yu BY, Li G, He T, Fan RR. Effects of thinning intensity on fine root biomass and morphological characteristics of middle-aged Pinus tabulaeformis plantations in the Huanglong Mountains [J]. Acta Ecol Sin, 2017, 37 (9): 3065-3073]
23 王文娜, 王燕, 王韶仲, 王政权, 谷加存. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27 (4): 1294-1302 [Wang WN, Wang Y, Wang SZ, Wang ZQ, Gu JC. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: A review [J]. Chin J Applied Ecol, 2016, 27 (4): 1294-1302]
24 单立山, 李毅, 张正中, 种培芳, 王洋, 苏铭, 王珊. 2种典型荒漠植物细根序级结构及功能特征分析[J]. 草地学报, 2017, 25 (5): 1014-1019 [Shan LS, Li Y, Zhang ZZ, Zhong PF, Wang Y, Su M, Wang S. Analysis of architecture and functions of fine roots of two dominant desert plants among different branch orders in arid and semi-arid areas in northwest, China [J]. Acta Agric Sin, 2017, 25 (5): 1014-1019]
25 陈冠陶, 郑军, 彭天驰, 李顺, 邱细容, 陈雨芩, 马豪宇, 涂利华. 扁刺栲不同根序细根形态和化学特征及其对短期氮添加的响应[J]. 应用生态学报, 2017, 28 (11): 3461-3468 [Chen GT, Zheng J, Peng TC, Li S, Qiu XR, Chen YQ, Ma HY. Fine root morphology and chemistry characteristics in different branch orders of Castanopsis platyacantha and their responses to nitrogen addition [J]. Chin J Appl Ecol, 2017, 28 (11): 3461-3468]
26 朱婉芮, 汪其同, 刘梦玲, 高明宇, 董玉峰, 王华田, 王延平. 连作杨树人工林细根寿命的代际差异及其影响因素[J]. 生态学报, 2018, 38 (1): 226-235 [Zhu WR, Wang QT, Liu ML, Gao MY, Dong YF, Wang HT, Wang YP. The difference in fine root lifespan between successive rotations of poplar plantation and the dominant causal factors [J]. Acta Ecol Sin, 2018, 38 (1): 226-235]
27 蔡倩颖, 王迪海. 陕北枣树‘七月鲜’细根形态的季节变化[J]. 西北林学院学报, 2017, 32 (3): 30-34 [Cai QY, Wang DH. Seasonal variations of the fine root morphology of “Qiyuexian” jujube in northern Shaanxi [J]. J NW For Univ, 2017, 32 (3): 30-34]
28 汪其同, 高明宇, 刘梦玲, 王华田, 王延平, 董玉峰. 杨树根际土碳氮磷生态化学计量特征与根序的相关性[J]. 应用与环境生物学报, 2018, 24 (1): 119-124 [Wang QT, Gao MY, Liu ML, Wang HT, Wang YP, Dong YF. Correlation between ecological stoichiometry characteristics of carbon, nitrogen, and phosphorus, and the root order in the rhizosphere soils of poplar plantations [J]. Chin J Appl Environ Biol, 2018, 24 (1): 119-124]
29 伏耀龙, 张兴昌, 王金贵. 岷江上游干旱河谷土壤粒径分布分形维数特征[J]. 农业工程学报, 2012, 28 (3): 120-125 [Fu YL, Zhang XC, Wang JG. Fractal dimension of soil particle-size distribution characteristics in dry valley of upper Minjiang River [J]. Trans CSAE, 2012, 28 (3): 120-125]

更新日期/Last Update: 2018-10-25