|本期目录/Table of Contents|

[1]王晓胡,寇涌苹,赵文强,等.贡嘎山森林土壤氨氧化微生物数量在海拔梯度的空间分异特征[J].应用与环境生物学报,2019,25(02):275-280.[doi:10.19675/j.cnki.1006-687x.2018.05045]
 WANG Xiaohu,KOU Yongping,et al.Spatial heterogeneity of ammonia-oxidizing microorganisms along the elevation gradient in the forest soil of Mount Gongga[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):275-280.[doi:10.19675/j.cnki.1006-687x.2018.05045]
点击复制

贡嘎山森林土壤氨氧化微生物数量在海拔梯度的空间分异特征
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
275-280
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Spatial heterogeneity of ammonia-oxidizing microorganisms along the elevation gradient in the forest soil of Mount Gongga
作者:
王晓胡寇涌苹赵文强严贤春
1西华师范大学生命科学学院 南充 637002 2中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 610041
Author(s):
WANG Xiaohu1 2 KOU Yongping 2 ZHAO Wenqiang2** & YAN Xianchun1**
1 College of Life Science, China West Normal University, Nancong 637002, China 2 CAS Key Laboratory Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
氨氧化微生物基因丰度分布特征海拔梯度贡嘎山环境因子
Keywords:
ammonia-oxidizing microorganism gene abundance distribution pattern elevation gradient Gongga Mountain environmental factor
分类号:
S154.36
DOI:
10.19675/j.cnki.1006-687x.2018.05045
摘要:
土壤氮循环是构成全球生物化学循环的关键组成部分,其中氨氧化微生物介导的硝化作用是驱动氮循环的重要动力. 为了解不同海拔梯度森林土壤氨氧化微生物的空间分布规律,采用qPCR技术,以参与编码的氨单加氧酶(amoA)为标记,调查各海拔梯度(1 800-4 100 m)贡嘎山森林土壤氨氧化细菌(Ammonia oxidizing bacteria,AOB)和氨氧化古菌(Ammonia oxidizing archaea,AOA)的数量,并揭示其与环境因子的相关性. 结果表明,不同海拔梯度森林表层土壤中均具有一定数量的AOA和AOB,且在低海拔地区(1 800-3 200 m)均高于高海拔地区(3 600-4 100 m). AOA数量在海拔较低地区变化趋势为0.04%-5.63%,垂向尺度上最高降低10.7%;AOB数量在不同海拔之间均存在显著差异,3 800 m较1 800 m高出22.5%. Spearman相关分析表明,不同海拔梯度氨氧化微生物数量对环境变化的响应模式不同,AOB与气候(年均温度、年均降水量)、pH、土壤温度、碳氮含量及电导率相关,而AOA变化仅与气候(年均温度、年均降水量)和土壤温度相关,与其他土壤因素不相关. 本研究揭示出贡嘎山不同海拔梯度气候和土壤性质的综合作用可能是引起AOA和AOB数量及丰度变化的因子,且AOA和AOB数量具有极强的空间异质性;结果可为进一步研究大尺度森林生态系统氮循环相关微生物的海拔分布格局提供数据支撑. (图2 表2 参30)
Abstract:
The soil nitrogen cycle is a key component of the global biochemical cycle, of which the microorganism-mediated ammonia oxidation is an important driving force. However, the spatial distribution of forest soil ammonia-oxidizing microorganisms along elevation gradients has yet to be clarified. In this study, the abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in the forest soil of Mount Gongga was investigated. The effect of environmental factors was analyzed using the qPCR technique with the encoded ammonia monooxygenase (amoA) as a marker. The results showed that there was a variable quantity of AOA and AOB in the surface soil of different altitude gradient forests, and the abundance in the low altitude area (1 800-3 200 m) was higher than in the high altitude area (3 600-4 100 m). The abundance of AOA in the lower altitude areas ranged from 0.04%-5.63%, with a peak of 10.7% on the vertical scale. The abundance of AOB varied significantly with different altitudes, and was 22.5% higher at 3 800 m than at 3 600 m. Spearman correlation analyses showed that the response patterns of ammoxidation microbial abundance to environmental changes were different in different elevation gradients. AOB are affected by climate (annual average temperature, average annual precipitation), pH, soil temperature, carbon and nitrogen content, and electrical conductivity, while AOA are only affected by climate (annual average temperature, annual precipitation) and soil temperatures. The comprehensive effects of the climate and soil properties at various altitudes may be the factor that leads abundance differences in AOA and AOB. This study revealed that the ammonia-oxidizing microorganisms at different altitude gradients on Mount Gongga have a strong spatial heterogeneity and are significantly affected by environmental factors. This can provide data support for a further in-depth study of the distribution pattern of nitrogen cycle-related microorganisms in a large-scale forest ecosystem.

参考文献/References:

1. 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29: 406-415 [He JZ, Zhao LY. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle [J]. Acta Ecol Sin, 2009, 29: 406-415]
2. Han P, Li M, Gu JD. Biases in community structures of ammonia/ ammonia-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland and rice paddy soil [J]. Appl Microb Biol, 2013, 97 (19): 8741-8756
3. Park SJ, Ghai R, Martin-Cuadrado AB, Rodriguez-Valera F, Chuang WH, Kwon K, Lee JH, Madsen EL, Rhee SK. Genimes of two new ammonia-oxidizing archaea enriched from deep marine sediments [J]. PLoS ONE, 2014, 9 (5): e96449
4. Ke XB, Angel R, Lu YH, Conrad R. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil [J]. Environ Microb, 2013, 15 (8): 2275-2292
5. 李虎, 黄福义, 苏建强, 洪有为, 俞慎. 浙江省瓯江氨氧化古菌和氨氧化细菌分布及多样性特征[J]. 环境科学, 2015, 36 (12): 4659-4666 [Li H, Huang FY, Su JQ, Hong YW, Yu SH. Distribution and diversity of ammonia-oxidizing archaea and ammonium-oxidizing bacteria in surface sediments of Qujiang river [J]. Environ Sci, 2015, 36 (12): 4659-4666]
6. Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil ph on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria [J]. Environ Microb, 2008, 10 (11): 2966-2978
7. Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia-oxidizing archaea and bacteria in soil microcosms [J]. ISME J, 2011, 5 (6): 1067-1071
8. Yang YF, Gao Y, Wang SP, Xu DP, Yu H, Wu LW, Lin QY, Hu YG, Li XZ, He ZL, Deng Y, Zhou JZH. The microbial gene diversity along an elevation gradient of the Tibetan grassland [J]. ISME J, 2014, 8: 430-440
9. 苏俞, 王为东. 我国北方四类土壤中氨氧化古菌和氨氧化细菌的活性及对氨氧化的贡献[J]. 环境科学, 2017, 37 (9): 3519-3527 [Su Y, Wang W. Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in North China [J]. Environ Sci, 2017, 37 (9): 3519-3527]
10. Liu XZ, Wang G. Measurements of nitrogen isotope composition of plants and surface soils along the altitudinal transect of the eastern slope of mount Gongga in southwest china [J]. Rapid Commun Mass Spectrom, 2010, 24: 3063-3071
11. 沈泽昊, 刘增力, 伍杰. 贡嘎山东坡植物区系的垂直分布格局[J]. 生物多样性, 2004, 12 (1): 89-98 [Shen ZH, Liu ZL, Wu J. Altitudinal pattern of flira on the eastern slope of Mt.Gongga [J]. Biodivers Sci, 2004, 12 (1): 89-98]
12. 钟祥浩, 张文, 罗辑. 贡嘎山地区山地生态系统与环境特征[J]. AMBIO-人类环境杂志, 1999, 28 (8): 648-654 [Zhong XH, Zhang JW, Luo J. The characteristics of the mountain ecosystem and environment in the Gongga Mountain Region [J]. AMBIO-A J Hum Environ, 1999, 28 (8): 648-654
13. Li JB, Shen ZH, Li CHN, Kou YP, Wang YS, Tu B, Zhang SHH, Li XZH. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China [J]. Front Microb, 2018, 9: 569
14. Sun HY, Wu YH, Yu D, Zhou J. Altitudinal gradient of microbial biomass phosphorus and its relationship with microbial biomass carbon, nitrogen, and rhizosphere soil phosphorus on the eastern slope of Gongga Mountain, SW China [J]. PLoS ONE, 2013, 8 (9): e72952
15. 余无忌. 中国土壤温度特征与年均土壤温度估算方法研究[D]. 沈阳: 沈阳农业大学, 2017 [Yu WJ. Methods for estimation of mean annual soil temperature in China [D]. Shengyang: Shenyang Agricultural University, 2017]
16. Shen CC, Ni YY, Liang WJ, Chu HY. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra [J]. Front Microb, 2015, 6: 582
17. Hou YB, Zhang H, Miranda L, Lin, SJ. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: Microalgal pcna as the model gene [J]. PLoS ONE, 2010, 5 (3): 10.1371/journal.pone.0009545
18. Zhang LM, Wang M, Prosser JI, Zheng YM, He JZH. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest [J]. FEMS Microbiol Ecol, 2009, 70 (2): 208-217
19. Leininger S, Urich T, Schloter M, Schwark W, Qi J, Nicol GW, Prosser JI, Schuster SC, Schelper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442 (7104): 806-809
20. 何荣, 汪家社, 施政, 方燕鸿, 徐自坤, 权伟, 张增信, 阮宏华. 武夷山植被带土壤微生物量沿海拔梯度的变化[J]. 生态学报, 2009, 29 (9): 5138-5144 [He R, Wang JSH, SHI ZH, Fang YH, Xu ZK, Quan W, Zhang ZX, Ruan HH. Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China [J]. Acta Ecol Sin, 2009, 29 (9): 5138-5144]
21. Livesley SJ, Kiese R, Graham J, Weaton CJ, Butter-Bahl, Arndt SK. Trace gas flux and the influence of short-term soil water and temperature dynamics in australian sheep grazed pastures of differing productivity [J]. Plant Soil, 2009, 309 (1-2): 89-103
22. J?rgensen CJ, Elberling B. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil [J]. Soil Biol Biochem, 2012, 53: 9-17
23. M?rkved PT, D?rsch P, Bakken LR. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH [J]. Soil Biol Biochem, 2007, 39 (8): 2048-2057
24. Anna RG, Maite PJ. Distinctive NO and N2O emission patterns in ammonia oxidizing bacteria: effect of ammonia oxidation rate, DO and pH [J]. Chem Eng J, 2017, 321: 358-365
25. Hu Bl, Liu SH, Wang W, Shen LD, Liu WP, Tian GM, Xu XY, Zhen P. pH-dominated niche segregation of ammonia-oxidizing microorganisms in Chinese agricultural soils [J]. FEMS Microbiol Ecol, 2014, 90: 290-299
26. Gleeson DB, Müller C, Banerjee S, Ma W, Siciliano SD, Murphy DV. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space [J]. Soil Biol Biochem, 2010, 42 (10): 1888-1891
27. Ke XB, Lu YH. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil [J]. FEMS Microbiol Ecol, 2012, 80 (1): 87-97
28. Wang Z, Luo TX, Li RC, Tang YH, Du MY. Cause for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions [J]. J Veg Sci, 2013, 24: 189-201
29. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity [J]. PNAS, 2008, 105: 11505-11511
30. Subrahm anyam G, Hu HW, Zheng YM, Archana G, He JZ, Liu YR. Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols [J]. Appl Soil Ecol, 2014, 77: 59-67
31.

更新日期/Last Update: 2019-04-25