|本期目录/Table of Contents|

[1]王云,彭丽云,孙雪丽,等.龙眼Hsf基因家族全基因组鉴定及体胚发生过程中的表达分析[J].应用与环境生物学报,2019,25(02):420-431.[doi:10.19675/j.cnki.1006-687x.2018.06004]
 WANG Yun,PENG Liyun,SUN Xueli,et al.Genome-wide identification of longan Hsf family members and their functional analysis during somatic embryogenesis in longan[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):420-431.[doi:10.19675/j.cnki.1006-687x.2018.06004]
点击复制

龙眼Hsf基因家族全基因组鉴定及体胚发生过程中的表达分析
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
420-431
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Genome-wide identification of longan Hsf family members and their functional analysis during somatic embryogenesis in longan
作者:
王云彭丽云孙雪丽高玉莹陈晓慧陈裕坤林玉玲赖钟雄
福建农林大学园艺植物生物工程研究所 福州 350002
Author(s):
WANG Yun PENG Liyun SUN Xueli GAO Yuying CHEN Xiaohui LIN Yuling & LAI Zhongxiong**
Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
龙眼热激转录因子家族DlHsf成员鉴定表达分析miRNA预测
Keywords:
Dimocarpus longan Lour. heat shock transcription factor family DlHsf gene identification expression analysis miRNA prediction
分类号:
S667.203
DOI:
10.19675/j.cnki.1006-687x.2018.06004
摘要:
基于龙眼基因组数据库对龙眼Hsf(DlHsf)基因家族进行全基因组鉴定,并对其基因结构、启动子作用元件和CpG岛分布情况、编码蛋白的理化性质和进化情况以及它们在不同体胚发生阶段和不同组织器官的表达情况进行研究,同时对靶定DlHsf的miRNA进行预测分析. 结果表明:DlHsf基因家族共20个成员,基因结构高度保守. 它们编码的蛋白具有典型的DNA结合域(DBD),且均为不含信号肽的不稳定蛋白. 启动子分析发现,该基因家族成员的启动子除典型的热激元件(HSE)外,还含有MYB元件等与逆境胁迫及生长发育相关的元件,DlHsfA1d、DlHsfA9a、DlHsfA9b和DlHsfC1启动子存在典型的CpG岛. 进化树分析表明DlHsf可分为DlHsfA、DlHsfB和DlHsfC三类. qRT-PCR结果表明,DlHsf在胚性阶段(EC)和球形胚阶段(GE)表达量较高,在不完全胚性紧实结构阶段(ICpEC)表达量较低,在龙眼体胚发育过程中呈现“V”状趋势,表明DlHsf可能主要在EC、GE阶段发挥作用. 此外,DlHsf家族成员在花芽和花蕾中表达量较高,其次是在果肉中,推测DlHsfs可能与龙眼花发育等生长过程相关. psRNA Target预测结果表明DlHsf基因家族受到miRNA调控,且调控方式多样. 本研究表明DlHsf功能多样,可能在龙眼生长发育、胁迫响应、DNA甲基化、组织器官特异表达等生物学过程中发挥作用. (图8 表5 参38)
Abstract:
This study identified and investigated the biological functions of the heat shock transcription factor (DlHsf) family in Dimocarpus longan Lour. Based on the longan genome database, DlHsf gene family members were screened, analyzed with their gene structure, promoter acting elements and CpG island distribution, physicochemical properties obtained, and evolution analysis of their encoded proteins. Their expression in different somatic embryogenesis stages and different tissues and organs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The miRNA targeting DlHsf family members were predicted and analysed by psRNA target. In total, 20 DlHsf gene family members were identified. The structures of the DlHsf were highly conserved. The encoding proteins of DlHsf were all unstable hydrophobic proteins with a DNA-binding domain and without signal peptides. In addition, all their promoters contained a heat-stress-related heat shock element, and some stress and growth and development-related elements, such as MYB-related elements, suggesting DlHsf were involved in a variety of stress and growth and development-related conditions. There were also typical CpG islands in DlHsfA1d, DlHsfA9a, DlHsfA9b, and DlHsfC1 promoters. Phylogenetic relationship analysis showed that the DlHsfs were mainly classified into three categories, i.e., DlHsfA, DlHsfB, and DlHsfC. The qRT-PCR results showed that the expression of DlHsf gene family members varied at different somatic embryogenesis stages and in different tissues and organs. Their expression levels in the embryogenic callus (EC) and globular embryos (GE) were higher than that in the incomplete compact pro-embryogenic cultures. With the development of longan somatic embryos, the expression of DlHsf showed a “V”-like curve, indicating that DlHsf may play a major role in the EC and GE stages during somatic embryogenesis. Higher expression levels in flower buds and alabastrums, followed by the flesh indicated that the DlHsf gene family members influenced flowering and other growth processes during the growth and development of longan tissues and organs. psRNA target results indicated that miRNA showed diverse regulation on DlHsf. DlHsf gene family members are versatile and may play a role in longan growth, stress response, DNA methylation and tissue-specific expression, and other important biological functions.

参考文献/References:

1 Ohama N, Sato H, Shinozaki K, Yamaguchishinozaki K. Transcriptional regulatory network of plant heat stress response [J]. Trends Plant Sci, 2017, 22 (1): 53
2 Guo M, Liu JH, Ma X, Luo DX, Gong ZH. The plant Heat Stress Transcription Factors (HSFs): structure, regulation, and function in response to abiotic stresses [J]. Front Plant Sci, 2016, 7 (273): 114
3 Scharf KD, Rose S, Zott W. Three tomato genes code for heat as transcription factors wim a region of remarkable homology to the DNA-binding domain of the yeast Hsf [J]. EMBo, 1990, 9 (13): 4495
4 Li PS, Yu TF, He GH, Chen?M, Zhou?YB. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses [J]. BMC Genomics, 2014, 15 (1): 1009
5 Zhu X, Huang C, Zhang L. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat, drought and high CO2 stresses [J]. Front Plant Sci, 2017, 8 (1): 1174
6 Scharf KD, Berberich T, Ebersberger I. The plant heat stress transcription factor (Hsf) family: structure, function and evolution [J]. Biochim Biophy Acta, 2012, 1819 (2): 104-119
7 Prasinos C, Krampis K, Samakovli D, Hatzopoulos P. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development [J]. J Exper Bot, 2005, 56 (412): 633
8 Swindell WR, Huebner M, Weber AP. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways [J]. BMC Genomics, 2007, 8 (1): 125
9 Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice [J]. Plant Sci, 2009, 176 (4): 583-90
10 Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezenand WH, Mariani C. Developmental and heat stress regulated expression of HsfA2 and small heat shock proteins in tomato anthers [J]. J Exp Bot, 2010, 61 (2): 453-462
11 Rahmati IM, Brown E, Weigand C, Tillett RL, Schlauch KA, Scharf KD. A comparison of heat-stress transcription changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16) [J]. BMC Genomics, 2018, 19: 549
12 张国俊, 王婷婷, 胡利宗, 李书粉, 高武军. 苹果Hsf家族成员的序列特征、表达与进化分析[J]. 华北农学报, 2017, 32 (2): 71-80 [Zhang GJ, Wang TT, Hu LZ, Li SF, Gao WJ. Sequence characterization, expression and evolution analysis of apple Hsf family members [J]. J North Chin Agric Univ, 2017, 32 (2): 71-80]
13 Zhang J, Liu B, Li J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses [J]. BMC Genom, 2015, 16 (1): 181
14 齐文娥, 陈厚彬, 彭朵芬. 中国龙眼产业发展现状、问题与对策建议[J]. 广东农业科学, 2016, 43 (8): 169-174 [Qi WY, Chen HB, Peng DF. Development status, problems and countermeasures of Longan industry in China [J]. Guangdong Agric Sci, 2016, 43 (8): 169-174]
15 Stief A, Altmann S, Hoffmann K. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors [J]. Plant Cell, 2014, 26 (4): 1792
16 Lin Y, Min J, Lai R. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics [J]. Gigascience, 2017, 6 (5): 1-14
17 赖钟雄. 龙眼生物技术研究[M]. 福州: 福建科学技术出版社, 2003 [Lai ZX. Longan biotechnology research [M]. Fuzhou: Fujian Sci-Tech Press, 2003]
18 田奇琳. 龙眼胚性培养物DlRan3A和DlRan3B基因的功能分析[D]. 福州: 福建农林大学, 2017 [Tian QL. Functional analysis of DlRan3A and DlRan3B genes in longan embryogenic cultures [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017]
19 Lin YL, Lai ZX. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree [J]. Plant Sci, 2010, 178 (4): 359-365
20 Lin Y, Lai Z. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in Longan (Dimocarpus longan Lour.) [J]. PLoS ONE, 2013, 8 (4): e60337
21 Lescot M, Déhais P, Thijs G. Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucl Acids Res, 2002, 30 (1): 325-327
22 Gardinergarden M, Frommer M. CpG Islands in vertebrate genomes [J]. J Mol Biol, 1987, 196 (2): 261-282
23 刘爽. 菠菜热激转录因子Hsf家族全基因组分析及SoHsfA1基因功能分析[D]. 上海: 上海师范大学, 2016 [Liu S. Genome analysis of the thermotolerant transcription factor Hsf family of spinach and the functional analysis of SoHsfA1 gene [D]. Shanghai: Shanghai Normal University, 2016]
24 Bailey TL, Williams N, Misleh C. MEME: discovering and analyzing DNA and protein sequence motifs [J]. Nucl Acids Res, 2006, 34 (Web Server issue): W369
25 Guo M, Lu JP, Zhai YF. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.) [J]. BMC Plant Biol, 2015, 15 (1): 151
26 Huang Y, Li MY, Wang F, Xu ZS, Huang W, Wang GL, Ma J, Xiong AS. Heat shock factors in carrot: genome-wide identification, classification and expression profiles response to abiotic stress [J]. Mol Biol Res, 2015, 42 (5): 893-905
27 Liu H, Charng Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development [J]. Plant Physiol, 2013, 163 (1): 276-290
28 Lin Q, Jiang Q, Lin J. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit [J]. Gene, 2015, 559 (2): 129
29 Hewezi T. Editorial: epigenetic regulation of plant development and stress responses [J]. Plant Cell Rep, 2017, 37 (1): 1-2
30 Banerjee A, Roychoudhury A. The gymnastics of epigenomics in rice [J]. Plant Cell Rep, 2017, 37 (1): 1-25
31 Qu AL, Ding YF, Jiang Q. Molecular mechanisms of the plant heat stress response [J]. Biochem Biophys Res Commun, 2013, 432 (2): 203-207
32 Guan Q, Lu X, Zeng H. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis [J]. Plant J, 2013, 74 (5): 840–851
33 Jeyaraj A, Zhang X, Hou Y. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences [J]. BMC Plant Biol, 2017, 17 (1): 212
34 Lin J S, Kuo CC, Yang IC. MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis [J]. Front Plant Sci, 2018, 9 (1): 68
35 Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling [J]. J Exp Bot, 2014, 65 (5): 1229
36 Zhang J, Xue B, Gai M, Song S, Jia N, Sun H. Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch [J]. Front Plant Sci, 2017, 8: 566
37 Kumar V, Staden JV. New insights into plant somatic embryogenesis: an epigenetic view [J]. Acta Physiol Plant, 2017, 39 (9): 194
38 徐小萍, 陈晓慧, 吕科良, 陈旭, 林玉玲, 赖钟雄. 陈晓慧. 龙眼漆酶家族成员全基因组结构与功能分析[J]. 应用与环境生物学报, 2018, 24 (4): 1-16 [Xu XP, Chen XH, Lü KL, Chen X, Lin YL, Lai ZX, Chen XH. Genome-wide identification function analysis of the Laccase gene Family in Dimocarpus Longan Lour. [J]. Chin J Appl Environ Biol, 2018, 24 (4): 1-16]

相似文献/References:

[1]邱栋梁,刘星辉,王湘平.模拟酸雨对龙眼叶绿体的伤害效应[J].应用与环境生物学报,2002,8(02):154.
 QIU Dongliang,et al..Injury effects of simulated acid rain on chloroplasts of longan leaves[J].Chinese Journal of Applied & Environmental Biology,2002,8(02):154.
[2]邱栋梁,刘星辉,郭素枝.模拟酸雨对龙眼幼果纤维素酶活性和内源激素含量的影响[J].应用与环境生物学报,2004,10(01):35.
 QIU Dongliang,et al..Effects of simulated acid rain on cellulase activity and contents of endogenous hormone in young fruit of longan[J].Chinese Journal of Applied & Environmental Biology,2004,10(02):35.
[3]林玉玲,赖钟雄.龙眼胚性愈伤组织Cu/Zn-SOD分子伴侣基因CCS的克隆及其在体胚发生过程中的表达分析[J].应用与环境生物学报,2012,18(03):351.[doi:10.3724/SP.J.1145.2012.00351]
 LIN Yuling,LAI Zhongxiong.Cloning of Copper Chaperone for Superoxide Dismutase Gene CCS from Embryogenic Callus of Dimocarpus longan Lour. and Its Expression Analysis During Somatic Embryogenesis[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):351.[doi:10.3724/SP.J.1145.2012.00351]
[4]赖瑞联,林玉玲,赖钟雄.龙眼生长素受体基因TIR1的克隆及其与miR393互作关系[J].应用与环境生物学报,2016,22(01):95.[doi:10.3724/SP.J.1145.2015.05051]
 LAI Ruilian,LIN Yuling & LAI Zhongxiong**.Cloning of auxin receptor gene TIR1 and its interaction with miR393 in Dimocarpus longan Lour.[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):95.[doi:10.3724/SP.J.1145.2015.05051]
[5]陈旭,曾友竞,王嘉毅,等.龙眼miR159家族成员进化特性及时空表达[J].应用与环境生物学报,2017,23(04):602.[doi:10.3724/SP.J.1145.2017.03011]
 CHEN Xu,ZENG Youjing,WANG Jiayi,et al.Effect of main grain components on the starch swelling power of Tibetan hull-less barley (Hordeum vulgare var. nudum)[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):602.[doi:10.3724/SP.J.1145.2017.03011]
[6]苏立遥 黄倏祺 蒋梦琦 厉雪 徐小萍 陈旭 赖钟雄 林玉玲**.龙眼miR403及其候选靶标对外源激素的响应模式以及在龙眼体胚中的表达模式*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.03058]
 SU Liyao,HUANG Shuqi,JIANG Mengqi,et al.The response patterns of miR403 and its candidate targets to exogenous hormones and their expression profiles in longan somatic embryo*[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):1.[doi:10.19675/j.cnki.1006-687x.2019.03058]

更新日期/Last Update: 2019-04-25