|本期目录/Table of Contents|

[1]晋蕾,周应敏,李才武,等.野化培训与放归、野生大熊猫肠道菌群的组成和变化[J].应用与环境生物学报,2019,25(02):344-350.[doi:10.19675/j.cnki.1006-687x.2018.06007]
 JIN Lei#,ZHOU Yingmin#,LI Caiwu,et al.Composition and variation of gut microbiome of trained, preparatory reintroduced, reintroduced and wild giant pandas[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):344-350.[doi:10.19675/j.cnki.1006-687x.2018.06007]
点击复制

野化培训与放归、野生大熊猫肠道菌群的组成和变化
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
344-350
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Composition and variation of gut microbiome of trained, preparatory reintroduced, reintroduced and wild giant pandas
作者:
晋蕾周应敏李才武吴代福李果何永果李蓓黄炎张和民邹立扣
1四川农业大学资源学院 成都 611130 2中国大熊猫保护研究中心 卧龙 623006
Author(s):
JIN Lei1# ZHOU Yingmin2# LI Caiwu2 WU Daifu2 LI Guo2 HE Yongguo2 LI Bei1 HUANG Yan2 ZHANG Hemin2** & ZOU Likou1**
1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China 2 China Conservation and Research Center for the Giant Panda, Wolong 623006, China
关键词:
培训预放归放归野外大熊猫肠道菌群
Keywords:
trained preparatory reintroduction reintroduction wild giant panda gut microbiome
分类号:
Q959.838 : Q938.1
DOI:
10.19675/j.cnki.1006-687x.2018.06007
摘要:
追踪采集1只亚成年大熊猫(Ailuropoda melanoleuca)在野化培训(N = 4)、预放归(N = 4)和放归(N = 5)过程的粪样以及5个野生大熊猫粪样,基于高通量测序技术,研究大熊猫肠道细菌、真菌的组成和变化. 结果发现,亚成年大熊猫肠道内细菌在门水平上以Firmicutes(61.33%)和Proteobacteria(35.09%)为主,在属水平上以Clostridium(39.68%)、Escherichia(20.94%)和Leuconostoc(8.75%)为主. 真菌在门水平上以Ascomycota(81.56%),在属水平上以Humicola(26.43%)、Sphaerulina(12.42%)和Aspergillus(4.49%)为主. 预放归大熊猫肠道细菌菌群的组成和放归大熊猫相似,但真菌菌群存在差异. 随着培训—放归—野外的过程变化,细菌菌群丰富度和多样性差异不显著(P > 0.05),其中Chao-1指数呈上升趋势,而Shannon指数呈下降趋势. 野外和培训大熊猫肠道真菌菌群的丰富度差异显著(P < 0.05),Chao-1和Shannon指数均呈上升趋势. 同时发现,在细菌菌群中Leuconostoc的比例持续上升,而Acinetobacter和Zea比例持续下降. 真菌菌群中Stachybotrys、Fusarium、Retroconis和Debaryomyces的比例持续上升,Cryptococcus 和Lulwoayna比例持续下降. Clostridium、Bacillus、Sphaerulina和Aspergillus在放归过程中比例最高. 本研究结果表明预放归过程肠道菌群不稳定,且真菌菌群的变化较明显,建议放归过程中缩短预放归时间;总体而言,野化培训与放归大熊猫肠道菌群的多样性、丰富度和结构组成逐渐向野生大熊猫趋近,野化培训与放归有利于大熊猫肠道菌群的重建,提高放归大熊猫的存活率. (图6 表2 参37)
Abstract:
This study aims to investigate the composition and variation of gut bacteria and fungi of juvenile giant pandas (GPs) during different stages: training (N = 4), preparatory reintroduction (N = 4), and reintroduction (N = 5). The samples from the juvenile GPs as well as 5 feces samples from wild GPs were analyzed using high-throughput sequencing technology to investigate the relationship between the gut microbiome and the survival rate of GPs. The results showed that, at phylum level, the bacteria in juvenile giant pandas mainly consisted of Firmicutes (61.33%) and Proteobacteria (35.09%), and the fungi mainly consisted of Ascomycota (81.56%). At genus level, the bacteria mainly consisted of Clostridium sp. (39.68%), Escherichia sp. (20.94%) and Leuconostoc sp. (8.75%), while the fungi mainly consisted of Humicola sp. (26.43%), Sphaerulina sp. (12.42%) and Aspergillus sp. (4.49%). The composition of bacteria in preparatory reintroduced GPs was similar to that of reintroduced GPs, contrarily, the composition of fungal communities was opposite. The richness and diversity of bacteria showed no significant difference between trained, preparatory reintroduced, and wild GPs. Contrarily, the richness of fungi showed significant differences between wild vs. trained, and wild vs. preparatory reintroduced GPs. However, in bacterial communities, the proportion of Leuconostoc sp. increased continuously over the four stages, while Acinetobacter sp. and Zea sp. decreased. In fungal communities, the proportion of Stachybotrys sp., Fusarium sp., Retroconis sp., and Debaryomyces sp. displayed a continuous increase, while Cryptococcus sp. and Lulwoayna sp. decreased over the four stages. Additionally, the proportions of Clostridium sp., Bacillus sp., Sphaerulina sp., and Aspergillus sp. in reintroduced GPs were larger than those in other groups. The study showed that GPs gut microbiome fluctuated during the prejaratory reintroduction stage, especially fungi. Thus, we suggested shorter preparatory reintroduction stage. In general, the richness, diversity, and composition of the gut microbiome in trained and reintroduced GPs gradually approached that of wild GPs. Besides, training and reintroduction can help the GPs reestablish their gut microbiome and improve the survival rate.

参考文献/References:

1 Bai W, Connor T, Zhang J, Yang H, Dong X, Gu X, Zhou C. Long-term distribution and habitat changes of protected wildlife: giant pandas in Wolong nature reserve, China [J]. Environ Sci Pollut Res Int, 2018, 25: 1-9
2 罗永久, 何廷美, 钟志军, 王承东, 王晓艳, 吴虹林, 程安春, 何永果, 李才武, 张和民, 李德生, 杨海迪, 彭广能. 圈养大熊猫食性转换前期肠道细菌多样性[J]. 中国兽医学报, 2013, 33 (12): 1896-1901 [Luo YJ, He YM, Zhong ZJ, Wang CD, Wang XY, Wu HL, Cheng AC, He YG, Li CW, Zhang HM, Li DS, Yang HD, Peng GN. The diversity of intestinal bacterial flora of captive giant panda in the prophase of diet cnversion [J]. Chin Vet Sci, 2013, 33 (12): 1896-1901]
3 郭明月, 黄国印, 马晓瑞, 魏从翀, 陈芳芳, 胡超, 徐辉, 乔代蓉, 曹毅. 大熊猫肠道产果胶酶细菌的多样性及产酶特性[J]. 应用与环境生物学报, 2016, 22 (1): 127-132 [Guo MY, Huang GY, Ma XR, Wei CC, Chen FF, Hu C, Xu H, Qiao DR, Cao Y. Biodiversity and characterization of pectinase-producing bacteria isolated from giant panda gut [J]. Chin J Appl Environ Biol, 2016, 22 (1): 127-132]
4 张晋东, 李玉杰, 王玉君, 欧阳志云, 乔麦菊, 张和民. 野生大熊猫种群数量两种调查方法对比[J]. 应用与环境生物学报, 2017, 23 (6): 1142-1147 [Zhang JD, Li YJ, Wang YJ, Ou YZY, Qiao MJ, Zhang HM. Comparison of two investigation methods for population of wild giant pandas [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1142-1147
5 杨波, 杨承忠, 涂飞云, 杜一平, 刘洋, 李德生, 张和民, 黄炎. 大熊猫野化放归中的遗传学分析[J]. 四川动物, 2013, 32 (1): 149-155 [Yang B, Yang CZ, Tu FY, Du YP, Liu Y, Li DS, Zhang HM, Huang Y. The genetics analysis of captive giant panda reintroduction [J]. Sichuan J Zool, 2013, 32 (1): 149-155]
6 Hayward MW, Adendorff J, Moolman L, Hayward GJ, Keley GIH. The successful reintroduction of leopard panthera pardus to the addo Elephant national park [J]. Afr J Ecol, 2010, 45 (1): 103-104
7 Smith DW, Mech LD, Meagher M, Clark WE, Jaffe R, Phillips MK, Mack JA. Wolf–bison interactions in yellow stone national park [J]. J Mammal, 2000, 81 (4): 1128-1135
8 蒋志刚. 普氏野马(Equus przewalskii) [J]. 动物学杂志, 2004, 39 (2): 100-1[Jiang ZG, Wild horse (Equus przewalskii) [J]. Chin J Zool, 2004, 39 (2): 100-101]
9 谭志, 鲍楠, 赖翼, 张和民, 李德生, 刘成君. 野外放归大熊猫和圈养大熊猫肠道正常菌群的研究[J]. 四川大学学报(自然科学版), 2004, 41 (6): 1276-1279 [Tan Z, Bao N, Lai Y, Zhang HM, Li DS, Liu CJ. The study on the normal intestinal microflora of the giant panda returned to wild and the giant panda in captivity [J]. J Sichuan Univ (Nat Sci Ed), 2004, 41 (6): 1276-1279]
10 宋仕贤, 张明春, 张亚辉, 黄炎, 李德生, 周小平, 张和民. 野化培训大熊猫领域行为的初步研究[J]. 四川林业科技, 2016, 37 (3): 112-115 [Song SX, Zhang MC, Zhang YH, Huang Y, Li DS, Zhou XP, Zhang HM. A study of the home range behaviors for the pre-released giant panda [J]. J Sichuan Forestry Sci technol, 2016, 37 (3): 112-115]
11 胡旭, 王涛, 梁姗, 李薇, 吴晓莉, 金锋. 肠道微生物与认知功能[J]. 中国微生态学杂志, 2015, 27 (11): 1359-1364 [Hu X, Wang T, Liang S, Li W, Wu XL, Jin F. The role of gut microbiota in cognitive function [J]. Chin J Microecol, 2015, 27 (11): 1359-1364]
12 王立志, 徐谊英. 圈养大熊猫粪便中微生物多样性的研究[J]. 四川动物, 2016, 35 (1): 17-23 [Wang LZ, Xu YY. Diversity of microorganism in the feces of captive giant pandas [J]. Sichuan J Zool, 2016, 35 (1): 17-23]
13 邹兴淮, 曾鲁军, 孙中武, 闫文, 何光昕, 吴孔菊, 陈玉春, 翁妮娜. 大熊猫疾病死亡因素分析及其保护对策[J]. 东北林业大学学报, 1998 (1): 53-56 [Zou XH, Zeng LJ, Sun ZW, Yan W, He GX, Wu KJ, Chen YC, Weng NN. Analysis of lethal factors of diseased giant pandas and prevention countermeasures [J]. J NE For Univ, 1998 (1): 53-56]
14 杨伟平, 王建刚, 曹斌云. 猪肠道微生物群落组成变化及其影响因素[J]. 中国畜牧杂志, 2017, 53 (1): 12-16 [Yang WP, Wang JG, Cao BY. [J]. Composition and influence factors of pigs’ gut microbial community [J]. Chin J Anim Sci, 2017, 53 (1): 12-16]
15 楼骏, 柳勇, 李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报, 2014, 30 (15): 256-260 [Lou J, Wang JG, Li Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity [J]. Chin Agric Sci Bull, 2014, 30 (15): 256-260]
16 Hartmann A, Singh M, Klingmller W. Comparison of spatial positioning between radio telemetry (RT) and GPS in temperate mountain forests: a case study on tracking the reintroduction of captive giant pandas [J]. Acta Theriol Sin, 2012, 32 (3): 193-202
17 张明春, 黄炎, 李德生, 张和民, 周世强, 黄金燕, 刘巅, 周小平. 圈养大熊猫野化培训期的生境选择特征[J]. 生态学报, 2013, 33 (19): 6014-6020 [Zhang MC, Huang Y, Li DS, Zhang HM, Zhou SQ, Huang JY, Zhou XP. Habitat selection of the pre-released giant panda in Wolong nature reserve [J]. Acta Ecol Sin, 2013, 33 (19): 6014-6020]
18 张泽钧, 张陕宁, 魏辅文, 王鸿加, 李明, 胡锦矗. 移地与圈养大熊猫野外放归的探讨[J]. 兽类学报, 2006, 26 (3): 292-299 [Zhang ZJ, Zhang SN, Wei FW, Wang HJ, Li M, Hu JC. Translocation and discussion on reintroduction of captive giant panda [J]. Acta Theriol Sin, 2006, 26 (3): 292-299]
19 何永果, 晋蕾, 李果, 李才武, 李蓓, 李伟, 张亚辉, 胡正泉, 黄炎, 张和民, 邹立扣. 基于高通量测序技术研究成年大熊猫肠道菌群[J]. 应用与环境生物学报, 2017, 23 (5): 771-777 [He YG, Jin L, Li G, Li CW, Li B, Li W, Zhnag YH, Hu ZQ, Huang Y, Zhang HM, Zou LK. Gut microbiome of adult giant pandas based on high-throughput sequencing technology [J]. Chin J Appl Environ Biol, 2017, 23 (5): 771-777]
20 Schloss PD, Westcott SL, Ryabin T, Hall JR. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Appl Environ Microbiol, 2009, 75 (23): 7537-7541
21 Edgar RC, Hass BJ, Clemente