|本期目录/Table of Contents|

[1]张珩琳,杨婧,周浩,等.Cupriavidus metallidurans SHE胞内提取物合成纳米金及其催化应用[J].应用与环境生物学报,2019,25(02):457-462.[doi:10.19675/j.cnki.1006-687x.2018.07023]
 ZHANG Henglin,YANG Jing,ZHOU Hao,et al.Biosynthesis of gold nanoparticles by the cell-free extracts of Cupriavidus metallidurans SHE and its catalytic applications[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):457-462.[doi:10.19675/j.cnki.1006-687x.2018.07023]
点击复制

Cupriavidus metallidurans SHE胞内提取物合成纳米金及其催化应用
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
457-462
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Biosynthesis of gold nanoparticles by the cell-free extracts of Cupriavidus metallidurans SHE and its catalytic applications
作者:
张珩琳杨婧周浩李政李严戴春晓曲媛媛
大连理工大学环境学院,工业生态与环境工程教育部重点实验室 大连 116024
Author(s):
ZHANG Henglin YANG Jing ZHOU Hao LI Zheng LI Yan DAI Chunxiao & QU Yuanyuan**
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
关键词:
纳米金Cupriavidus metallidurans生物合成4-硝基苯酚偶氮染料
Keywords:
gold nanoparticle Cupriavidus metallidurans biosynthesis 4-nitrophenol azo dyes
分类号:
X172
DOI:
10.19675/j.cnki.1006-687x.2018.07023
摘要:
纳米金(AuNPs)凭借其在电化学和光学方面独特的性能,在催化、环境污染物的降解以及环境修复等方面近年来成为研究热点. 相比较传统的合成方法,生物法合成纳米金具有过程简单、无毒、环保、成本较低等优势;除此之外,生物法合成的纳米金颗粒具有尺寸均一、单分散性好且生物相容性好的特性. 利用Cupriavidus metallidurans SHE胞内提取物合成纳米金,结果显示最适反应条件为胞内提取物浓度为500 mg/L,HAuCl4浓度为1 mmol/L,pH为7,反应时间为7 d;透射电子显微镜(TEM)图像表明纳米金颗粒主要为球形和伪球形,平均粒径为14.3 nm;通过傅里叶转换红外线光谱(FTIR)分析结果推测提取物中的羟基、氨基、羧基等官能团参与了纳米金的稳定过程;在上述条件下合成的纳米金对4-硝基苯酚具有较好的催化还原活性,其催化速率常数k为5.98 × 10-4/s,且该纳米金能催化脱色多种偶氮染料. 本研究表明Cupriavidus metallidurans SHE能绿色合成尺寸均一、分散性良好的纳米金,且该纳米金在催化还原硝基芳烃污染物和偶氮染料方面具有潜在的应用价值. (图4 表1 参28)
Abstract:
Gold nanoparticles (AuNPs) with their unique properties of electrochemistry and photology have been widely used in catalysis, degradation of pollutants, environmental modification, and so on. Compared with conventional synthesis methods, AuNP biosynthesis is simpler, non-toxic, cleaner, eco-friendly, and cost effective. Furthermore, biosynthesized AuNPs have attracted much attention owing to the advantages of uniform particle size, single dispersion, and better biological capacity. In this study, a cell-free extract of Cupriavidus metallidurans SHE was used to synthesize AuNPs. The optimal conditions were 500 mg/L cell-free extract, 1 mmol/L HAuCl4, pH 7, and 7 days. Transmission electron microscope (TEM) images showed that the AuNPs were pseudospherical and spherical with an average size of 14.3 nm. Fourier transform infrared spectrometer (FTIR) analysis showed that hydroxyl, amino, and carboxyl groups played a role in the stability process. The investigation of catalytic properties proved that the AuNPs could serve as highly efficient catalysts for 4-nitrophenol reduction with a reaction rate constant k of 5.98 × 10-4/s. Additionally, it has potential for azo dye decolorization. This study showed that C. metallidurans SHE could synthesize AuNPs with good dispersion and the AuNPs had potential application in the catalytic reduction of 4-NP and azo dyes.

参考文献/References:

1 袁帅, 刘峥, 马肃. 纳米金粒子的理化性质, 制备及修饰技术和应用研究现状及进展[J]. 材料导报, 2012, 26 (9): 52-58 [Yuan S, Liu Z, Ma X. Application status and research progress in the physical and chemical properties, preparation methods and modification techniques of gold nanoparticle [J]. Mater Rev, 2012, 26 (9): 52-58]
2 Halperin WP. Quantum size effects in metal particles [J]. Mod Phys Rev, 1986, 58 (3): 533-606
3 Ball P, Garwin L. Science at the atomic scale [J]. Nature, 1992, 355: 761-766
4 裴晓芳, 沈文丽, 由胜男, 厉舒祯 张照婧 王经伟 张旭旺 曲媛媛. Trichosporon montevideense WIN提取物合成纳米金及其对硝基芳烃的催化特性[J]. 应用与环境生物学报, 2017, 23 (3): 409-414 [Pei XF, Shen WL, You SN, Li SZ, Zhang ZJ, Wang JW, Zhang XW, Qu YY. Biosynthesis of gold nanoparticles by the cell-free extracts of Trichosporon montevideense WIN for catalytic reduction of nitroaromatics [J]. Chin J Appl Environ Biol, 2017, 23 (3): 409-414]
5 Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0-degrees-C [J]. Chem Lett, 1987, 16 (2): 405-408
6 Günter S, Benedetto C. Nanoparticulated gold: syntheses, structures, electronics, and reactivities [J]. Eur J Inorg Chem, 2003, 2003 (17): 3081-3098
7 吴爽. 纳米金的合成及其在生物中的应用[D]. 武汉: 武汉理工大学, 2012 [Wu S. Synthesis of gold nanoparticles and its application in biology [D]. Wuhan: Wuhan University of Technology, 2012]
8 Ahmed S, Annu, Ikram S, Yudha SS. Biosynthesis of gold nanoparticles: a green approach [J]. J Photochem Photobiol B, 2016, 161: 141-153
9 Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes [J]. Adv ColloidInterface Sci, 2010, 156 (1): 1-13
10 Das SK, Das AR, Guha AK. Microbial dynthesis of multishaped gold nanostructures [J]. Small, 2010, 6: 1012-1021
11 沈娥. Cupriavidus sp. SHE的筛选及特性研究[D]. 大连: 大连理工大学, 2015 [Shen E. Screening and characteration research of the strain Cupriavidus sp. SHE [D]. Dalian: Dalian University of Technology, 2015]
12 Fazekas SG, Webster R, Datyner. Two new staining procedures for quantitative estimation of proteins on electrophoretic strips [J]. Biochem Biophys Acta, 1963, 71: 377-391
13 Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes [J]. J Mater Chem, 2003, 13 (7): 1822-1826
14 Yang CX, Sun XY, Liu B. Controllable synthesis of chitosan-mediated gold nanoplate and the growth mechanisms [J]. Acta Chem Sin, 2012, 70 (3): 259-264
15 Mishra P, Mishra A, Das B, Khan ML. Facile biosynthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition [J]. Biochem Eng J, 2016, 105: 264-272
16 Shi CH, Zhu NG, Cao YL, Wu P. Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline [J]. Nano Res Lett, 2015, 10 (1): 147
17 Zhang XW, Qu YY, Shen WL, Li HJ, Zhang ZJ, Zhou JT. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols [J]. Colloids Suf A, 2016, 497: 280-285
18 Bogireddy NKR,Anand KKH, MandalBK. Gold nanoparticles-synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes [J]. J Mol Liq, 2015, 211: 86-875
19 Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T. Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process [J]. J Phys Chem, 2007, 111 (12): 4596-4605
20 Bastús NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus [J] Ostwald ripening Langmuir, 2012, 27 (17): 11098-11105
21 Qu YY, Shen WL, Pei XF, Ma F,You SN, Li SZ, Zhou JT. Biosynthesis of gold nanoparticles by Trichoderma sp. WL-Go for azo dyes decolorizationc [J]. J Environ Sci, 2016, 56: 79-86
22 Parial D, Pal R. Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes [J]. J Appl Phycol, 2014, 27: 975-984
23 Mishra A, Kumari M, Pandey S,Chaudhury V, Gupta KC, Nautiya CS.Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. [J]. Bioresour Technol, 2014, 166: 235-242
24 Narayanan KB, Sakthivel N. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol [J]. J Hazard Mater, 2010, 189 (1): 519-525
25 Srivastava SK, Yamada R, Ogino C, Kondo A. Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol [J]. Nano Res Lett, 2013, 8 (1): 1-9
26 Mata R,Bhaskaran A, Sadras SR. Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth [J]. Particuology, 2015, 24: 78-86
27 Narayanan KB, Park HH, Han SS. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential [J]. Chemosphere, 2015, 141: 169-175
28 Wu XQ, Wu XW, Huang Q, Shen JS, Zhang HW. In situ synthesized gold nanoparticles in hydrogels for catalytic reduction of nitroaromatic compounds [J]. Appl Surf Sci, 2015, 331: 210-218

相似文献/References:

[1]裴晓芳,沈文丽,由胜男,等.Trichosporon montevideense WIN提取物合成纳米金及其对硝基芳烃的催化特性[J].应用与环境生物学报,2017,23(03):409.[doi:2016.06004]
 PEI Xiaofang,SHEN Wenli,YOU Shengnan,et al.Biosynthesis of gold nanoparticles by the cell-free extracts of Trichosporon?montevideense WIN for catalytic reduction of nitroaromatics[J].Chinese Journal of Applied & Environmental Biology,2017,23(02):409.[doi:2016.06004]
[2]杨婧 栾云鹏 卢治宇 白健冬 章洪彬 李炫莹 马桥 曲媛媛**.Trichoderma sp. WL-Go 细胞提取物合成纳米金影响因素及其催化特性*[J].应用与环境生物学报,2019,25(06):1.[doi:10.19675/j.cnki.1006-687x.2019.02031]
 YANG Jing,LUAN Yunpeng,LU Zhiyu,et al.Influencing factors and c atalytic characteristics of gold nanoparticles biosynthesized by the cell-free extracts of Trichoderma sp. WL-Go *[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):1.[doi:10.19675/j.cnki.1006-687x.2019.02031]

更新日期/Last Update: 2019-04-25