|本期目录/Table of Contents|

[1]李东,袁振宏,孙永明,等.城市生活垃圾有机组分厌氧发酵产氢和甲[英 文][J].应用与环境生物学报,2009,15(02):250-257.[doi:10.3724/SP.J.1145.2009.00250]
 LI Dong,YUAN Zhenhong**,et al.Sequential Anaerobic Fermentative Production of Hydrogen and Methane from Organic Fraction of Municipal Solid Waste[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):250-257.[doi:10.3724/SP.J.1145.2009.00250]
点击复制

城市生活垃圾有机组分厌氧发酵产氢和甲[英 文]()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年02期
页码:
250-257
栏目:
生物质能源专辑
出版日期:
2009-03-15

文章信息/Info

Title:
Sequential Anaerobic Fermentative Production of Hydrogen and Methane from Organic Fraction of Municipal Solid Waste
作者:
李东袁振宏孙永明马隆龙李连华
(1中国科学院广州能源研究所 广州 510640)
(2中国科学院研究生院 北京 100049)
Author(s):
LI Dong1 2 YUAN Zhenhong1** SUN Yongming1 MA Longlong1 & LI Lianhua1
(1Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)
(2Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
城市生活垃圾厌氧发酵氢气甲烷联产
Keywords:
municipal solid waste anaerobic fermentation hydrogen methane co-production
分类号:
X705 : TQ920.1
DOI:
10.3724/SP.J.1145.2009.00250
文献标志码:
A
摘要:
为了提高能源回收效率,采用大米、土豆、生菜、瘦肉、花生油和榕树叶作为实验原料,模拟有机垃圾中普遍存在的淀粉、膳食纤维、蛋白质、脂肪和木质纤维类成分,进行厌氧发酵产氢以及对其剩余物厌氧发酵产甲烷. 结果表明,在厌氧发酵产氢阶段,整个过程没有甲烷生成,大米、土豆、生菜、瘦肉、花生油和榕树叶的氢气产率分别为125、103、35、0、5和0 mL g-1(VS),能源回收效率分别为7.9%、6.8%、1.9%、0、0.1%和0. 大米、土豆和生菜的氢气浓度分别为34%~59%、41%~56%和37%~70%,整个产氢阶段没有甲烷生成. 在厌氧发酵产甲烷阶段,上述原料的甲烷产率分别为232、237、148、278、866和50 mL g-1(VS),生物气中甲烷含量分别为42%~70%、57%~71%、73%~77%、59%~73%、68%~80%和54%~74%. 厌氧发酵联产氢气和甲烷整个过程上述原料的能源回收效率分别为56.3%、58.4%、28.8%、39.2%、81.2%和8.8%,总COD去除率分别为72.30%、81.70%、32.63%、47.59%、97.46%和11.29%. 图4 表5 参35
Abstract:
In order to improve energy recovery efficiency, the fermentative hydrogen production from organic fraction of municipal solid waste (OFMSW) was followed by methane production using the residual of hydrogen production as substrate. Six individual components of OFMSW including rice, potato, lettuce, lean meat, peanut oil and banyan leaves were selected as experimental materials. The results showed that at the hydrogen production stage, the hydrogen yields were 125, 103, 35, 0, 5 and 0 mL g-1(VS), and the energy efficiencies were 7.9%, 6.8%, 1.9%, 0, 0.1% and 0 for rice, potato, lettuce, lean meat, peanut oil and banyan leaves, respectively. The hydrogen compositions in biogas were about 34%~59%, 41%~56% and 37%~70% for rice, potato and lettuce, respectively. No methane was produced during the hydrogen production stage. During the methane production stage, the methane yields were 232, 237, 148, 278, 866 and 50 mL g-1(VS); the methane contents were 42%~70%, 57%~71%, 73%~77%, 59%~73%, 68%~80% and 54%~74%;the energy efficiencies of co-production of hydrogen and methane were 56.3%, 58.4%, 28.8%, 39.2%, 81.2% and 8.8%, the total COD removal rates for the whole process of hydrogen and methane production were 72.30%, 81.70%, 32.63%, 47.59%, 97.46% and 11.29% for rice, potato, lettuce, lean meat, peanut oil and banyan leaves, respectively. Fig 4, Tab 5, Ref 35

参考文献/References:

1 Angelidaki I, Ellegaard L, Ahring BK. Applications of the Anaerobic Digestion Process. Adv Biochem Engin & Biotechnol, 2003, 82: 1~33
2 Bolzonella D, Battistoni P, Susini C, Cecchi F. Anaerobic codigestion of waste activated sludge and OFMSW: The experiences of Viareggio and Treviso plants (Italy). Water Sci & Technol, 2006, 53 (8): 203~211
3 Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res, 2003, 7 (3): 609~616
4 Bolzonella D, Pavan P, Mace S, Cecchi F. Dry anaerobic digestion of differently sorted organic municipal solid waste: A full-scale experience. Water Sci Technol, 2006, 53 (8): 23~32
5 Kim M, Ahn YH, Speece RE. Comparative process stability and efficiency of anaerobic digestion: mesophilic vs thermophilic. Water Res, 2002, 36 (17): 4369~4385
6 De Baere L. Will anaerobic digestion of solid waste survive in the future. Water Sci Technol, 2006, 53 (8):187~194
7 Ministry of Environmental Protection of China. China Environmental State Bulletin. (2007-06-19) [2009-04-09]. http://www.sepa.gov.cn/plan/zkgb/06hjzkgb/
8 Ramachandran R, Menon RK. An overview of industrial uses of hydrogen. Intern J Hydrogen Energy, 1998, 23 (7): 593~598
9 Momirlan M, Veziroglu T. Current status of hydrogen energy. Renewable & Sustainable Energy Rev, 2002, 6 (1/2): 141~179
10 Benemann J. Hydrogen biotechnology: Progress and prospects. Nat Biotechnol, 1996, 14 (9): 1101~1103
11 Kraemer JT, Bagley DM. Continuous fermentative hydrogen production using a two-stage reactor system with recircle. Environ Sci & Technol, 2005, 39 (10): 3819~3825
12 Hu JJ (胡吉军), Guo WQ (郭维强), Jia ZG (贾志国), Fu N (付宁), Zhang J (张杰), Tao Y (陶勇), Gao P (高平), Li DP (李大平), Wang L (王镧). Characterization of H2-producing bacteria in mixed cultures. Chin J Appl Environ Biol (应用与环境生物学报), 2009, 15 (1): 115~119
13 Song L (宋丽), Liu XF (刘晓风), Liu PW (刘培旺), Yuan YX (袁月祥), Yan ZY (闫志英), He RY (何荣玉), He RN (贺蓉娜), Liao YZ (廖银章). Screening of highly efficient H2-producing aciduric anaerobic strain using microwave mutagenesis. Chin J Appl Environ Biol (应用与环境生物学报), 2008, 14 (3): 427~431
14 Liu PW (刘培旺), Yuan YX (袁月祥), Yan ZY (闫志英), Song L (宋丽), Liu XF (刘晓风), Liao YZ (廖银章), He RN (贺蓉娜). Effect of straw pretreatments on bio-hydrogen production. Chin J Appl Environ Biol (应用与环境生物学报), 2009, 15 (1): 125~129
15 Ren NQ, Li J, Li B, Wang Y, Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Intern J Hydrogen Energy, 2006, 31 (15): 2147~2157
16 Mizuno O, Ohara T, Shinya M, Noike T. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci & Technol, 2000, 42 (3/4): 345~350
17 Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol, 2003, 102 (1): 83~92
18 Okamoto M, Miyahara T, Mizuno O and Noike T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci & Technol, 2000, 41 (3): 25~32
19 Hallenbeck PC. Fundamentals of the fermentative production of hydrogen. Water Sci & Technol, 2005, 52 (1/2): 21~29
20 Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Intern J Hydrogen Energy, 2002, 27 (11/12): 1185~1193
21 Thauer R, Jungerman K and Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev, 1977, 41 (1): 100~180
22 Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA. Principles and Applications of Soil Microbiology. Englewood Cliffs, NJ, USA: Prentice Hall Press, 1999
23 Setlow P. Resistance of bacterial spores. In: Storz G, Hengge-Aronis R ed. Bacterial Stress Responses. Washington, DC: ASM Press, 2000. 217~230
24 Bisaillon A, Turcot J, Hallenbeck PC. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Intern J Hydrogen Energy , 2006, 31 (11): 1504~1508
25 Lee KS, Lin PJ, Chang JS. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Intern J Hydrogen Energy , 2006, 31 (4): 465~472
26 Chang FY, Lin CY. Biohydrogen production using an upflow anaerobic sludge blanket reactor. Intern J Hydrogen Energy, 2004, 29 (1): 33~39
27 Oh SE, Van Ginkel S, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci & Technol, 2003, 37 (22): 5186~5190
28 Chang JS, Lee KS, Lin PJ. Biohydrogen production with fixed-bed bioreactors. Intern J Hydrogen Energy, 2002, 27 (11/12): 1167~1174
29 Salerno MB, Park W, Zuo Y and Logan BE. Inhibition of biohydrogen production by ammonia. Water Res, 2006, 40 (6): 1167~1172
30 APHA. Standard Method for the Examination of Water and Wastewater. New York, USA: American Public Health Association, 1995
31 Lee YJ, Miyahara T, Noike T. Effect of iron concentration on hydrogen fermentation. Bioresour Technol, 2001, 80 (3): 227~231
32 Xie BF, Cheng J, Zhou JH, Song WL, Liu JZ, Cen KF. Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation. Bioresour Technol, 2008, 99 (13): 5942~5946
33 Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol& Mol Biol Rev, 2002, 66 (3): 506~577
34 Christ O, Wilderer PA, Angerhöfer R, Faulstich M. Mathematical modeling of the hydrolysis of anaerobic processes. Water Sci & Technol, 2000, 41 (3): 61~65
35 Xie BF, Cheng J, Zhou JH, Song WL and Cen KF. Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency. Intern J Hydrogen Energy, 2008, 33 (19): 5006~5011

相似文献/References:

[1]靳孝庆,徐昊,沈磊,等.Clostridium papyrosolvens厌氧发酵产氢研究[J].应用与环境生物学报,2008,14(01):104.
 JIN Xiaoqing,et al..Hydrogen Production from Anaerobic Fermentation by Clostridium papyrosolvens[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):104.
[2]石峰,刘和,聂艳秋,等.产氢产酸/同型产乙酸两相耦合工艺厌氧发酵市政污泥生产乙酸[J].应用与环境生物学报,2008,14(06):814.[doi:10.3724/SP.J.1145.2008.00814]
 SHI Feng,LIU He**,NIE Yanqiu,et al.Acetate Production from Sewage Sludge by a Novel Coupled Syntrophic Acetogenesis with Homoacetogenesis Process[J].Chinese Journal of Applied & Environmental Biology,2008,14(02):814.[doi:10.3724/SP.J.1145.2008.00814]
[3]王佳婧,刘晓风,袁月祥,等.厌氧纤维素降解产氢复合菌系L-3的研究[J].应用与环境生物学报,2010,16(01):104.[doi:10.3724/SP.J.1145.2010.00104]
 WANG Jiajing,LIU Xiaofeng,YUAN Yuexiang,et al.Cellulose Degradation and Hydrogen Production by Anaerobic Microbial Consortium L-3[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):104.[doi:10.3724/SP.J.1145.2010.00104]
[4]钱丹丹,马隆龙,袁月祥,等.一株嗜碱产甲烷八叠球菌的分离鉴定与系统发育分析[J].应用与环境生物学报,2012,18(02):262.[doi:10.3724/SP.J.1145.2012.00262]
 QIAN Dandan,MA Longlong,YUAN Yuexiang,et al.Isolation, Identification and Phylogenetic Analysis of an Alkalophilic Methanosarcina[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):262.[doi:10.3724/SP.J.1145.2012.00262]
[5]赵亚,刘志军,刘凤霞,等.CO厌氧发酵制氢过程中的微生物特性及其影响因素[J].应用与环境生物学报,2012,18(04):656.[doi:10.3724/SP.J.1145.2012.00656]
 ZHAO Ya,LIU Zhijun,LIU Fengxia,et al.Microbial Characteristics and Influence Factors During Anaerobic Fermentation for Biohydrogen Production from CO[J].Chinese Journal of Applied & Environmental Biology,2012,18(02):656.[doi:10.3724/SP.J.1145.2012.00656]

备注/Memo

备注/Memo:
广东省科技计划项目(No. 0711031100011)资助 Supported by the Science and Technology Program of Guangdong, China (No. 0711031100011)
更新日期/Last Update: 2009-05-05