|本期目录/Table of Contents|

 TIAN Qijian,LIN Yonghui,HE Xingbing,et al.Toxicity Test and Decolorization of Simulated Orange G Dye Wastewater by Ceriporia lacerata P2 with a High-salinity Tolerance[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):876-882.[doi:10.3724/SP.J.1145.2011.00876]





Toxicity Test and Decolorization of Simulated Orange G Dye Wastewater by Ceriporia lacerata P2 with a High-salinity Tolerance
(吉首大学生物资源与环境科学学院 吉首 416000)
TIAN QijianLIN YonghuiHE XingbingHU WenyongTAN LingCHEN Liang
(College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Hunan, China)
Ceriporia lacerata decolorization orange G dye wastewater enzyme activity toxicity test
X172 : Z171.5
为评价撕裂蜡孔菌P2处理橙黄G染料废水的应用潜力,采用批次实验在开敞系统中研究静置与摇动、染料初始浓度、pH、温度、盐度、碳源、氮源、金属离子等因子对该菌降解橙黄G染料废水的影响,同时利用植物萌发与微生物抑菌试验进行染料与脱色溶液的毒性测试. 结果表明,与摇动培养相比,静置培养更适合于撕裂蜡孔菌的脱色,最适脱色pH与温度分别为9和25 ℃. 盐度测试结果显示撕裂蜡孔菌能在浓度为128 g L-1的盐溶液中能进行高效脱色,可达70%以上. 在上述参数体系的优化基础上,分别进行了碳源、氮源与金属离子的添加优化实验,结果显示碳源、氮源与金属离子的最适浓度分别为4 g L-1葡萄糖、0.15 g L-1硝酸铵和0.1 mmol L-1 Zn2+. 菌丝吸附在整个脱色过程中作用较小,撕裂蜡孔菌对橙黄G的脱色过程以酶的降解为主,未发现该菌分泌漆酶,只分泌锰过氧化物酶与木质素过氧化物酶,其最高活性分别为230 U mL-1和158 U mL-1. 植物与微生物毒性分析显示撕裂蜡孔菌脱色后的产物对植物与微生物的毒性大大降低. 因此,撕裂蜡孔菌对于处理橙黄G染料废水具有良好的应用潜力. 图6 表1 参27
In order to evaluate the application potential of Ceriporia lacerate P2 in treating dye wastewater, batch experiments were carried out in an air-opened system to investigate the effect of static and shaken culture, initial dye concentration, pH, temperature, salinity, carbon source, nitrogen source and metal ion on the decolorization of orange G dye wastewater by strain P2 . Meanwhile, the toxicity test for the non-decolorizing dye and decolorizing products using plant seed germination method and antimicrobial test were also conducted. The results showed that, compared with shaken culture, static culture was more suitable for decolorization by C. lacerata P2, and the optimal pH and temperature were 9 and 25 ℃, respectively. The results of salinity test showed that the decolorization rate of orange G was above 70% in 128 g L-1 salt solution. Based on the system with optimal parameters, carbon source, nitrogen source and metal ion were separately added for choosing appropriate factors. The results indicated that the optimal condition for decolorization were as follows: 4 g L-1 glucose, 0.15 g L-1 ammonium nitrate and 0.1 mmol L-1 zinc ion. The results of biosorption test showed that mycelial sorption played a minor role in decolorization, and the decolorization was primarily driven by the degrading enzymes. In this study, laccase activity was not detected, while only manganese peroxidase and lignin peroxidase were checked with a maximum activity of 230 U mL-1 and 158 U mL-1, respectively. The results of toxicity test suggested that, in comparison with non-decolorized dye, toxicity of decolorized solution on plant seed germination and microbial organism greatly declined. Therefore, C. lacerata P2 had a good application potential in treating orange G dye wastewater. Fig 6, Tab 1, Ref 27


1 Babu PEJ, Kumar V, Visvanathan R. Equilibrium and kinetic study for the removal of malachite green using activated carbon prepared from Borassus flabellofer male flower. Asia-Pac J Chem Eng, 2010, 5: 465~472
2 Hameed BH, EI-Khaiary MI. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J Hazard Mater, 2008, 154: 237~244
3 Li LT, Hong Q, Yan X, Fang GH, Ali SW, Li SP. Isolation of a malachite green-degrading Pseudomonas sp. MDB-1 strain and cloning of the tmr2 gene. Biodegradation, 2009, 20: 769~776
4 Wang XS. Invasive freshwater macrophyte alligator weed: Novel adsorbent for removal of malachite green from aqueous solution. Water Air Soil Pollut, 2010, 206: 215~223
5 Xu L, Zhu Y, He XB, Han GM, Tian XJ. Evaluation of a new fungus Ceriporia lacerate strain P2—its ability to decolorize alizarin red and methyl orange. World J Microbiol Biotechnol, 2008, 24: 3097~3104
6 Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: A critiacal review on current treatment technologies with a proposed alternative. Bioresour Technol, 2001, 77: 247~255
7 Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M. Optimization of medium for decolorization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeter Biodegr, 2008, 61: 189~193
8 Reddy CA. The potential for white rot fungi in the treatments of pollutants. Curr Opin Biotech, 1995, 6: 320~328
9 Sugano Y, Matsushima Y, Shoda M. Complete decolorization of the anthraquinone dye reactive blue 5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1. Appl Microbiol Biotechnol, 2006, 73: 862~871
10 Annuar MSM, Adnan S, Vikineswary S. Kinetics and energetics of azo dye decolorization by Pycnoporus sanguineus. Water Air Soil Pollut, 2009, 202: 1~4
11 Zuo ZF (左志芳). Study on the decolorization of white-rot fungi: [Master Thesis]. Nanjing, China: Nanjing University of Science and Technology (南京: 南京理工大学), 2006
12 Fan J (樊静), Liang J (梁静), Shao XJ (邵小静), Guo YH (郭延辉). Study on the decolorization of azo dye orange G by nanoscale iron particles synergized with ultrasound. Chin J Environ Eng (环境工程学报), 2008, 2 (10): 1312~1316
13 Lu L, Zhao M, Zhang BB, Yu SY, Bian XJ, Wang W, Wang Y. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl Microbiol Biotechnol, 2007, 74: 1232~1239
14 Tien M, Kirk TK. Lignin peroxidase of Phanerochaete chrysosporium. Meths Enzymol, 1988, 161: 238~249
15 Zhou LL (周琳琳), Yang C (杨策), Wang HY (王海燕), Huang SN (黄苏娜), Liu Q (刘庆), Hu DY (胡德耀), Hu SL (胡仕林), Li TR (李廷荣), Chen YB (陈岩冰), Jiang JX (蒋建新). Anti-infective effect of Zingiber corallinum Hance oil on drug-resistant bacteria and its acute toxicity. Acta Acad Med Mili Ter (第三军医大学学报), 2010, 32 (2): 111~114
16 Joe MH, Lim SY, Kim DH, Lee IS. Decolorization of reactive dyes by Clostridium bifermentans SL186 isolated from contaminated soil. World J Microbiol Biotechnol, 2008, 24: 2221~2226
17 Tian CP (田存萍), Zhou JT (周集体), Guo JB (郭建博), Yu H (喻晖). Decorlorization of azo dye K-2BP by salt-tolerant cultures at mixed hypo-saline concentration. Environ Sci Technol (环境科学与技术), 2006, 29 (6): 82~84
18 Guo JB (郭建博), Zhou JT (周集体), Wang D (王栋), Tian CP (田存萍), Wang P (王平), Li XX (李晓霞). Isolation, identification and the growing condition of a dye-decolorization and salt-tolerant bacteria strain GTY. Acta Sci Circum (环境科学学报), 2007, 27 (2): 201~205
19 Lin YH (林永慧), Chen L (陈亮), He XB (何兴兵), He YQ (何瑶庆), Zhou X (周霞). Biodegradation of aniline blue dye by a fungus Mucoromycotina sp. HS-3. Microbiology (微生物学通报), 2010, 37 (12): 1727~1733
20 Raghukumar C, Rivonkar G. Decolorization of molasses spent wash by the white-rot fungus Flavodon flavus, isolated from a marine habitat. Appl Microbiol Biotechnol, 2001, 55: 510~514
21 Liang HC (梁红昌), Qian YH (千英花), Zhang QH (张庆华), Cheng HM (陈和淼), Wu XY (吴晓玉). Preliminary discuss on identification and characterization of one decolorizing fungus. Microbiol China (微生物学通报), 2009, 36 (7): 956~961
22 Özsoy HD, Ünyayar A, Mazmanc MA. Decolourisation of reactive textile dyes Drimarene Blue X3LR and Remazol Brilliant Blue R by Funalia trogii ATCC 200800. Biodegradation, 2005, 16: 195~204
23 Leung PC, Pointing SB. Effect of different carbon and nitrogen regimes on Poly R decolorization by white-rot fungi. Mycol Res, 2002, 106: 86~92
24 Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M. Optimization of medium for decolorization of solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeter Biodegr, 2008, 61: 189~193
25 Zhao YG (赵阳国), Ren NQ (任南琪), Wang AJ (王爱杰), Liu YW (刘一威). The influence of Fe elements on sulfate reduction process and the response of microbial community. China Environ Sci (中国环境科学), 2007, 27 (2): 199~203
26 Jin J (金剑), Kang WL (康文丽), Sheng JP (生吉萍), Cheng FS (程凡升), Wang QS (王权帅), Zhang YX (张焱鑫), Zhang GP (张国鹏), Shen L (申琳). Enzyological characteristics of lignin peroxidase (LiP) from Coriolus versicolor. Food Sci (食品科学), 2010, 31 (17): 224~227
27 Yang Q, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M, Kettrup A. Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett, 2003, 25: 709~713


 Liu Shenghao,Shi Yuying,Lou Wuji,et al.PROPERTIES OF AZO DYES DEGRADATION BY PENICILLIUM P-93[J].Chinese Journal of Applied & Environmental Biology,1995,1(06):168.
 CHEN Hasierdun,YU Zhisheng,LIN Wenfang,et al.Identification of a New Isolated Yeast and Its Decolorization on Dyes[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):247.[doi:10.3724/SP.J.1145.2011.00247]
 CUI Yang,SU Wentao,GAO Ping,et al.Microbial Fuel Cell Coupled Bio-oxidation of Reducing Sulfide with Degradation of Azo Dyes[J].Chinese Journal of Applied & Environmental Biology,2012,18(06):978.[doi:10.3724/SP.J.1145.2012.00978]
[4]甘国娟,田红灯,潘永龙,等.一株新的高效偶氮染料脱色菌Paenibacillus dendritiformis GGJ7及其脱色作用[J].应用与环境生物学报,2018,24(03):563.[doi:10.19675/j.cnki.1006-687x.2017.03045]
 GAN Guojuan,,et al.A new efficient azo dye-decolorizing bacterium Paenibacillus dendritiformis GGJ7 and its decolorization process[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):563.[doi:10.19675/j.cnki.1006-687x.2017.03045]


湖南省教育厅项目(No. 10C1118)、湖南省自然科学基金项目(No. 10JJ6053)、湖南省科技厅项目(No. 2009FJ3041)、国家自然科学基金项目(No. 40971151)和吉首大学科研基金(Nos. jsdxkyzz200901,10JD028)
更新日期/Last Update: 2011-12-31