|本期目录/Table of Contents|

[1]柯崇榕,吴毕莎,邵庆伟,等.酿酒酵母PDC1基因过表达菌株的构建[J].应用与环境生物学报,2013,19(04):704-708.[doi:10.3724/SP.J.1145.2013.00704]
 KE Chongrong,WU Bisha,SHAO Qingwei,et al.Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):704-708.[doi:10.3724/SP.J.1145.2013.00704]
点击复制

酿酒酵母PDC1基因过表达菌株的构建()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
19卷
期数:
2013年04期
页码:
704-708
栏目:
研究论文
出版日期:
2013-08-25

文章信息/Info

Title:
Construction of Saccharomyces cescerevisiae Mutant with Overexpression of PDC1 Gene
作者:
柯崇榕吴毕莎邵庆伟杨威黄建忠
(1福建师范大学工业微生物教育部工程研究中心,生命科学学院 福州 350108)
(2莆田学院环境与生命科学系 莆田 351100)
Author(s):
KE Chongrong WU Bisha SHAO Qingwei YANG Wei HUANG Jianzhong
(1Engineering Research Center of Industrial Microbiology, Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China)
(2Department of Environmental and Life Sciences, Putian University, Putian 351100, China)
关键词:
酿酒酵母PDC1基因过表达荧光定量PCR乙醇发酵
Keywords:
Saccharomyces cerevisiae PDC1 overexpression real-time PCR ethanol production
分类号:
TQ920.1 : Q786
DOI:
10.3724/SP.J.1145.2013.00704
文献标志码:
A
摘要:
扩增PDC1全长和Kan基因,构建带有Kanr和Ampr的整合表达载体pSH-PDC1,线性化后LiAc/SS Carrier DNA/PEG法高效转化酿酒酵母YS2-△adh2-△ald6. G418结合PCR筛选获得阳性转化子,然后转入pSH65质粒,半乳糖诱导表达Cre酶切除Kan基因,获得PDC1过表达菌株. 荧光定量PCR分析表明过表达菌株PDC1的mRNA表达量是出发菌株的2.078倍,遗传性能稳定,生长情况与出发菌株无明显差异. 发酵试验显示过表达菌株蔗糖消耗速率较出发菌株缓慢,乙醇最大积累量为72 h的12.03%,提高了5.62%. 利用同源重组原理和Cre-LoxP系统,成功构建PDC1基因过表达突变株并提高了乙醇产量. 图6 表3 参17
Abstract:
Pyruvate decarboxylase (pdc) can catalyze the α-ketonic acid decarboxylation to acetaldehyde. To improve ethanol production, the PDC1 gene overexpression mutant of Saccharomyces cerevisiae YS2-△adh2-△ald6 was constructed. The full length CDS of PDC1 was cloned into vector pSH47 and Kanr/Ampr as selectable marker. Integration plasmid pSH-PDC1 was linearized and transferred into YS2-△adh2-△ald6 through LiAc/SS Carrier DNA/PEG. The positive transformants were grown on G418 plates and verified by PCR. The Kanr marker was rescued by transforming plasmid pSH65 into positive transformants and inducing expression of Cre recombinase in galactose-containing medium. YS2-△adh2-△ald6-PDC1 showed an insignificantly higher genetic stability with gene expression level of PDC1 mRNA 2.078 times that of YS2-△adh2-△ald6. The result of anaerobic fermentation showed that ethanol production of the mutant strain reached 12.03% at 72 h with lower sucrose consumption, 5.62 percent higher than that of the original strain. The experiment indicated that ethanol production could be improved significantly by overexpression of the PDC1 gene. Fig 6, Tab 3, Ref 17

参考文献/References:

Toivari M, Nygard Y, Kumpula EP, Vehkomaki, M. L Bencina M, Valkonen M, Maaheimo H, Andberg M, Koivula A, Ruohonen L, Penttila M, Wiebe MG. Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate [J]. Metab Eng, 2012, 14 (4): 427-436
Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A. Engineering strategy of yeast metabolism for higher alcohol production [J]. Microb Cell Fact, 2011, 10: 70
王凡强, 许平. 产乙醇工程菌研究进展[J]. 微生物学报, 2006, 46 (4): 673-675 [Wang FQ, Xu P. Progress on engineered strains for ethanol production [J]. Acta Microbiol Sin, 2006, 46 (4): 673-675]
Pohl M. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis. Adv Biochem Eng Biotechnol, 1997, 58: 15-43
王艳尊, 雷娟娟, 江贤章, 高媛媛, 李欣, 蓝灿华,陈由强, 陈如凯, 黄建忠. 酿酒酵母adh2和ald6双基因缺失突变株的构建[J]. 微生物学通报, 2009, 36 (2): 211-216 [Wang YZ, Lei JJ, Jiang XZ, Gao YY, Li X, Lan CH, Chen YQ, Chen RK, Huang JZ. Construction of Saccharomyces cerevisiae mutant deficient in ADH2 and ALD6 genes [J]. Microbiol China, 2009, 36 (2): 211-216]
Smith MG, Des Etages SG, Snyder M. Microbial synergy via an ethanol-triggered pathway [J]. Mol Cell Biol, 2004, 24 (9): 3874-3884
Van Hoek P, Flikweert MT, van der Aart QJM, Steensma HY, van Dijken JP, Pronk JT. Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae [J]. Appl Environ Microbiol, 1998, 64 (6): 2133-2140
Seeboth P, Bohnsack K,Hollenberg C. pdc1 (0) mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1 [J]. J Bacteriol, 1990, 172 (2): 678-685
Hohmann S, Cederberg H. Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5 [J]. Eur J Biochem, 1990, 188 (3): 615-621
Hohmann S. PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter [J]. Curr Genet, 1991, 20 (5): 373-378
Kong QX, Cao LM, Zhang AL, Chen X. Overexpressing GLT1 in gpd1 Δ mutant to improve the production of ethanol of Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2007, 73 (6): 1382-1386
林晓华, 柯崇榕, 吴毕莎, 郑永标, 李力, 陈由强, 黄建忠. 酿酒酵母SNF4基因敲除缺失菌株的构建[J]. 生物工程学报, 2011 (4): 572-578 [Lin XH, Ke CR, Wu BS, Zheng YB, Li L, Chen YQ, Huang JZ. Construction of Saccharomyces cerevisiae mutant with knockout of SNF4 gene [J]. Chin J Biotechnol, 2011 (4): 572-578]
Gueldener U, Heinisch J, Koehler G, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast [J]. Nucleic Acids Res, 2002, 30 (6): e23-e23
Winzeler EA, Liang H, Shoemaker DD, Davis RW. Functional analysis of the yeast genome by precise deletion and parallel phenotypic characterization [J]. Novartis Found Symp, 2000, 229: 105-111
Giaever G, Chu AM, Ni L, Connelly, C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B. Functional profiling of the Saccharomyces cerevisiae genome [J]. Nature, 2002, 418 (6896): 387-391
Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J]. Mol Cell Proteomics, 2007, 6 (3): 439-450
Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae [J]. Appl Biochem Biotechnol, 2012, 166: 856-865

相似文献/References:

[1]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报,2007,13(06):848.
 GAO Ruiying,et al..Kinetics and Equilibrium of Cu2+ Biosorption by Dried Biomass of Saccharomyces cerevisia[J].Chinese Journal of Applied & Environmental Biology,2007,13(04):848.
[2]李岩,王海燕,张义正.甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J].应用与环境生物学报,2010,16(06):798.[doi:10.3724/SP.J.1145.2010.00798]
 LI Yan,WANG Haiyan,ZHANG Yizheng.Localization of IbSUT1x Protein from Ipomoea batatas (L.) Lam in Yeast Cells[J].Chinese Journal of Applied & Environmental Biology,2010,16(04):798.[doi:10.3724/SP.J.1145.2010.00798]
[3]李宇浩,靳艳玲,龙飞,等.降粘酶在新鲜木薯发酵生产高浓度乙醇中的应用[J].应用与环境生物学报,2013,19(03):501.[doi:10.3724/SP.J.1145.2013.00501]
 LI Yuhao,JIN Yanling,LONG Fei,et al.Using Viscosity Reducing Enzyme as Annexing Agent in the Very High Gravity Ethanol Fermentation with Fresh Cassava[J].Chinese Journal of Applied & Environmental Biology,2013,19(04):501.[doi:10.3724/SP.J.1145.2013.00501]
[4]盛冠一,诸葛斌,宗红,等.高灵敏度铜抗性酿酒酵母表达系统的构建与应用[J].应用与环境生物学报,2014,20(03):357.[doi:10.3724/SP.J.1145.2014.12033]
 SHENG Guanyi,ZHUGE Bin,ZONG Hong,et al.Construction and application of the high sensitivity expression system of copper-resistant Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):357.[doi:10.3724/SP.J.1145.2014.12033]
[5]周利,汤岳琴,孙照勇,等.基于连续发酵驯化的高耐盐性酿酒酵母的育种[J].应用与环境生物学报,2014,20(03):360.[doi:10.3724/SP.J.1145.2014.11032]
 ZHOU Li,TANG Yueqin,SUN Zhaoyong,et al.Breeding of high salt-tolerant Saccharomyces cerevisiae strains based on continuous ethanol fermentation[J].Chinese Journal of Applied & Environmental Biology,2014,20(04):360.[doi:10.3724/SP.J.1145.2014.11032]
[6]张明明 万青青 张克俞 熊 亮 白凤武,赵心清**.过表达分支酸歧化酶编码基因ARO7对酿酒酵母抑制物耐受性的影响*[J].应用与环境生物学报,2016,22(02):201.[doi:10.3724/SP.J.1145.2015.09013]
 ZHANG Mingming,WAN Qingqing,ZHANG Keyu,et al.Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):201.[doi:10.3724/SP.J.1145.2015.09013]
[7]谷鸿宇,诸葛斌,方慧英,等.渗透压调控启动子表达木糖醇脱氢酶基因XYL2对重组酿酒酵母木糖代谢的影响[J].应用与环境生物学报,2016,22(06):1122.[doi:10.3724/SP.J.1145.2016.01035]
 GU Hongyu,ZHUGE Bin,et al.Effect of controlled overexpression of XYL2 coding for xyltiol dehydrogenase by osmo-responsive promoters on xylose metabolism in Saccharomyces cerevisiae[J].Chinese Journal of Applied & Environmental Biology,2016,22(04):1122.[doi:10.3724/SP.J.1145.2016.01035]
[8]张影,苟敏,孙照勇,等.混合糖发酵条件下甲酸抑制木糖发酵的机制[J].应用与环境生物学报,2017,23(06):990.[doi:10.3724/SP.J.1145.2017.02011]
 ZHANG Ying,GOU Min,SUN Zhaoyong,et al.The inhibitory mechanism of action of formic acid on xylose fermentation during mixed sugar fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(04):990.[doi:10.3724/SP.J.1145.2017.02011]

备注/Memo

备注/Memo:
现代农业产业技术体系建设专项资金(nycytx-024-01-20)、公益性行业(农业)科研专项(nyhyzx07-019)和农业部“948”项目(2006-G37)资助 Supported by the Earmarked Fund for Modern Agro-Industry Technology Research System (No. nycytx-024-01-20), the National Public Benefit Research Foundation (No. nyhyzx07-019), and the “948” Project of the Ministry of Agriculture of China (No. 2006-G37)
更新日期/Last Update: 2013-08-22