|本期目录/Table of Contents|

[1]冉启凡,孙庚,刘琳,等.若尔盖高寒草地沙化过程碳通量的变化特征[J].应用与环境生物学报,2015,21(05):954-959.[doi:10.3724/SP.J.1145.2015.02028]
 RAN Qifan,SUN Geng,LIU Lin,et al.Changes in carbon fluxes during the desertification process of alpine grasslands on the Zoige Plateau[J].Chinese Journal of Applied & Environmental Biology,2015,21(05):954-959.[doi:10.3724/SP.J.1145.2015.02028]
点击复制

若尔盖高寒草地沙化过程碳通量的变化特征()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
21卷
期数:
2015年05期
页码:
954-959
栏目:
研究论文
出版日期:
2015-10-25

文章信息/Info

Title:
Changes in carbon fluxes during the desertification process of alpine grasslands on the Zoige Plateau
作者:
冉启凡 孙庚 刘琳 张楠楠 史长光 陈冬明 马建忠
1四川农业大学动物科技学院 成都 611130 2中国科学院成都生物研究所 成都 610041 3云南省林业科学院 昆明 650000
Author(s):
RAN Qifan SUN Geng LIU Lin ZHANG Nannan SHI Changguang CHEN Dongming MA Jianzhong
1College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3Yunnan Academy of Forestry, Kunming 650000, China
关键词:
若尔盖高原高寒草地沙化碳通量季节动态日动态
Keywords:
Zoige Plateau alpine grassland desertification carbon flux seasonal variation diurnal variation.
分类号:
Q812
DOI:
10.3724/SP.J.1145.2015.02028
文献标志码:
A
摘要:
为了解若尔盖高原高寒草地沙化过程生态系统中CO2的收支变化,利用Li-840静态箱法于2013年生长季(5-10月),在一处典型沙化区域,分别调查未沙化(UN)、中度沙化(MO)和重度沙化(SE)草地的生态系统净通量(NEE)、生态系统呼吸(ER)和土壤呼吸(SR)的季节和日动态变化. 结果显示:若尔盖高寒草地未沙化草地和中度沙化草地NEE季节变化呈单峰状,中度沙化草地波动性增强,而重度沙化草地在整个生长季节变化不明显. 未沙化草地在生长季节日间瞬时NEE为-3.33 ?mol m-2 s-1,中度沙化草地为-2.06 ?mol m-2 s-1,是未沙化草地的61.86%,严重沙化草地为-0.62 ?mol m-2 s-1,是未沙化草地的18.61%. 在沙化过程中,土壤所贡献给生态系统整体的呼吸占比,从72.90%增加到79.28%,季节变化动态呈现出与系统呼吸相似的变化规律. 未沙化草地在生长季节的初期和中期均呈现出较强的碳汇特性,固碳速率分别为9.05 g m-2 d-1和28.70 g m-2 d-1,而在末期呈现出微弱碳源. 本研究表明,沙化使得高寒草地在生长季节由微弱的碳汇转变成为碳源,固碳能力严重削弱.
Abstract:
To detect the changes of carbon dioxide budget during the desertification process in alpine grasslands ecosystem, we investigated in a typical desertification area on the Zoige Plateau the net ecosystem carbon fluxes (NEE), ecosystem respiration (ER) and soil respiration (SR) in undesertified (UN), moderately desertified (MO) and severely desertified (SE) grasslands with the Li-840 static box system in the growing season (May to October). Our result showed a unimodal curve in seasonal NEE of the UN grassland and MO grassland; the dynamics of seasonal NEE was significantly enhanced in the MO but had no significant change in the SE. The average of NEE during the growing season was -3.33 ?mol m-2 s-1 in the UN, -2.06 ?mol m-2 s-1 in the MO (61.86% that in UN), and -0.62 ?mol m-2 s-1 in the SE (18.61% that of UN). During the process of desertification, the proportion of SR in ER increased from 72.90% to 79.28%, with the seasonal variation of SR similar to that of ER. UN in the early and mid growing season was a carbon sink with a carbon sequestration rate of 9.05 g m-2 d-1 and 28.78 g m-2 d-1 respectively; but it became a weak carbon source in the end of growing season. Our research indicated that desertification may change alpine grassland from weak carbon sink to carbon source in growing season, greatly weakening its carbon sequestration capacity.

参考文献/References:

1 Asner GP, Borghi CE, Ojeda RA. Desertification in central Argentina: changes in ecosystem carbon and nitrogen from imaging spectroscopy [J]. Ecol Appl, 2003, 13 (3): 629-648
2 李长久. 沙漠化威胁人类生存和发展——各国要协力防治沙漠蔓延[J]. 全球化, 2014, 5 (6): 52-60 [Li CJ. Desertification threat to human survival and development-countrise should join in a common effort [J]. Globalization, 2014, 5 (6): 52-60]
3 王长庭, 龙瑞军, 王启兰, 景增春, 施建军, 杜岩功, 曹广民. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J]. 应用与环境生物学报, 2008, 14 (2): 225-230 [Wang CT, Long RJ, Wang QL, Jing ZC, Shi JJ, Du YG, Cao GM. Changes in soil organic carbon and micobial biomass carbon at different gegradation successsional stage of alpine meadows in the headwater region of three rivers in China [J]. Chin J Appl Environ Biol, 2008, 14 (2): 225-230]
4 Hu GY, Dong ZB, Wei ZH, Lu JF, Yan CZ. Spatial and temporal change of desertification land of Zoige Basin in recent 30 years and its cause analysis [J]. Adv Earth Sci, 2009, 8: 10-13
5 Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304 (5677): 1623-1627
6 Lal R. Carbon sequestration in dryland ecosystems [J]. Environ Manage, 2004, 33 (4): 528-544
7 Davidson EA, Janssens IA, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440 (7081): 165-173
8 Watson RT, Noble LR, Bolin B, Ravindransth NH, Verardo DJ, Dokken DJ. Land Use, Land-use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2000
9 Lal R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems [J]. Land Degr Dev, 2002, 13 (6): 469-478
10 赵哈林, 李玉强, 周瑞莲. 沙漠化对科尔沁沙质草地生态系统碳氮储量的影响[J]. 应用生态学报,2007, 18 (11): 2412-2417 [Zhao HL, Li YQ, Zhou RL. Effects of desertification on C and N storages in grassland ecosystem on Horqin sandy land [J]. J Appl Ecol, 2007, 18 (11): 2412-2417]
11 Pintér K, Barcza Z, Balogh J, Czobel S, Csintalan Z, Tuba Z, Nagy Z. Interannual variability of grasslands’ carbon balance depends on soil type [J]. Comm Ecol, 2008, 9: 43-48
12 王杰, 叶柏生, 张世强, 李静, 吴锦奎, 周兆叶. 祁连山疏勒河上游高寒草甸CO2通量变化特征[J]. 冰川冻土, 2011, 33 (3): 646-653 [Wang J, Ye BS, Zhang SQ, Li J, Wu JK, Zhou ZY. Characteristing the CO2 flux varition of alpine meadow in the upstream of Shule river in Qilian mountain [J]. J Glac Geocry, 2011, 33 (3): 646-653]
13 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 2005, 25 (11): 2875-2882 [Yang JY, Wang CK. Soil carbon storage and flux of temperate foreast ecosystem in northeastern China [J]. Acta Ecol Sin, 2005, 25 (11): 2875-2882]
14 曹吉鑫, 田赞, 王小平, 孙向阳. 森林碳汇的估算方法及其发展趋势[J]. 生态环境学报, 2009, 18 (5): 2001-2005 [Cao JX, Tian Z, Wang XP,Sun XY. Estimation methods of forest sequestration and their propects [J]. Ecol Environ Sci, 2009, 18 (5): 2001-2005]
15 徐玲玲, 张宪洲, 石培礼, 于贵瑞, 张晓敏. 青藏高原高寒草甸生态系统净二氧化碳交换量特征[J]. 生态学报, 2005, 25 (8): 1948-1952 [Xu LL, Zhang XZ, Shi PL, Yu GR, Zhang XM. Net ecosystem carbon dioxide exchange of apline meadow in the Tibetan plateau from August to October [J]. Acta Ecol Sin, 2005, 25 (8): 1948-1952]
16 王海波, 马明国, 王旭峰, 谭俊磊, 耿丽英, 于文凭, 家淑珍. 青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素[J]. 干旱区资源与环境, 2014, 28 (6): 50-56 [Wang HB, Ma MG, Wang XF, Tan JL, Geng LY, Yu WP, Jia SZ. Carbon flux variation characteristics and its influencing factors in an alpine meadow ecosystem on eastern Qinghai-Tibetan plateau [J]. J Arid Land Res Environ, 2014, 28 (6): 50-56]
17 Li JC, Wang WL, Hu GY, Wei ZH. Changes in ecosystem service values in Zoige Plateau, China [J]. Agr Ecosyst Environ, 2010, 139 (4): 766-770
18 Yang YH, Fang JY, Smith P, Tang YH, Chen AP, Ji CJ, Hu HF, Rao S, Tan K, He JS. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004 [J]. Global Change Biol, 2009, 15 (11): 2723-2729
19 Dong ZB, Hu GY, Yan CZ, Wang WL, Lu JF. Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai–Tibetan Plateau [J]. Environ Earth Sci, 2010, 59 (8): 1731-1740.
20 邓东周, 杨执衡, 陈洪, 邹先锋, 李华, 桑尼, 罗建勋. 青藏高原东南缘高寒区土地沙化现状及驱动因子分析[J]. 西南林业大学学报, 2011, 31 (5): 27-32 [Deng DZ, Yang ZH, Chen H, Zhou XF, Li H, Sang N, Luo JX. Analysis of desertification status and driving factors on the frigid southeastern Qinghai-Tibetan plateau [J]. J SW For Univ, 2011, 31 (5): 27-32]
21 王德宣, 宋长春, 王毅勇, 赵志春. 若尔盖高原沼泽湿地与草地二氧化碳通量的比较[J]. 应用生态学报, 2008, 19 (2): 285-289 [Wang XD, Song CC, Wang YY, Zhao ZC. CO2 fluxes in mire and grassland on Ruoergai plateau. Chin J Appl Ecol, 2008, 19 (2): 285-289]
22 Wang RZ. Photosynthetic pathway types of forage species along grazing gradient from the Songnen grassland, northeastern China [J]. Photosynthetica, 2002, 40 (1): 57-61
23 LeCain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH. Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado [J]. Agric Ecol Environ, 2002, 93 (1): 421-435
24 Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland [J]. Ecol Appl, 1999, 9 (1): 65-71
25 牛叔文, 马利邦, 曾明明. 过牧对玛曲草地沙化的影响[J]. 生态学报, 2008, 28 (1): 145-153 [Niu SW, Ma LB, Zeng MM. Effect of overgrazing on grassland desertification in Maqu County [J]. Acta Ecol Sin, 2008, 28 (1): 145-153]
26 Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CM. Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient [J]. Oikos, 2004, 107 (1): 148-160
27 Haferkamp MR, MacNeil MD. Grazing effects on carbon dynamics in the northern mixed-grass prairie [J]. Environ Manage, 2004, 33 (1): S462-S474
28 钟华平, 樊江文, 于贵瑞, 韩彬, 胡中民, 丘燕珍, 梁飚. 草地生态系统碳循环研究进展[J]. 草地学报, 2005, 13 (21): 67-73 [Zhong HP, Fan JW, Yu GR, Han B, Hu ZM, Qiu YZ, Liang B. The research progress of grassland ecosystem carbon cycle [J]. Acta Agric Sin, 2005, 13 (21): 67-73]
29 Jia BR, Zhou GS, Wang FY, Wang YH, Weng ES. Effects of grazing on soil respiration of Leymus chinensis steppe [J]. Clim Change, 2007, 82 (1-2): 211-223
30 McNaughton SJ. Compensatory plant growth as a response to herbivory [J]. Oikos, 1983, 40 (3): 329-336
31 Derner JD, Boutton TW, Briske DD, Grazing and ecosystem carbon storage in the North American Great Plains [J]. Plant Soil, 2006, 280 (1-2): 77-90
32 Guitian R, Bardgett RD. Plant and soil microbial responses to defoliation in temperate semi-natural grassland [J]. Plant Soil, 2000, 220 (1-2): 271-277

相似文献/References:

[1]袁一斌,慕军鹏,彭幼红,等.多齿马先蒿与刺齿马先蒿花部形态、昆虫访花频率及种子产量比较研究[J].应用与环境生物学报,2011,17(04):467.[doi:10.3724/SP.J.1145.2011.00467]
 YUAN Yibin,MU Junpeng,PENG Youhong,et al.Comparative Study on Flower Trait, Pollinator Visitation Rate and Seed Production of Two Pedicularis Species[J].Chinese Journal of Applied & Environmental Biology,2011,17(05):467.[doi:10.3724/SP.J.1145.2011.00467]
[2]李其,刘琳,蔡义民,等.川西北高寒沙化草地治理恢复过程中CO2通量变化[J].应用与环境生物学报,2018,24(03):441.[doi:10.19675/j.cnki.1006-687x.2017.07032]
 LI Qi,LIU Lin**,CAI Yimin,et al.Changes in CO2 flux for different recovery processes of desertification in the alpine meadows of Northwest Sichuan[J].Chinese Journal of Applied & Environmental Biology,2018,24(05):441.[doi:10.19675/j.cnki.1006-687x.2017.07032]

备注/Memo

备注/Memo:
国家自然科学基金项目(31000233,31200378,31250110519,31350110328)、中国科学院“西部之光”项目、中国科学院战略性先导科技专项(XDA05050404-1)、中国科学院外籍青年专家项目(2012Y1SB0009)和四川省科技厅国际合作项目(2012HH000,2014HH0017)资助 Supported by the Natural Science Foundation of China (31000233, 31200378, 31250110519, 31000238, 31350110328), the Chinese Academy of Sciences (XDA05050404-01, 2012Y1SB0009), and the Sichuan Provincial Department of Science and Technology (2012HH0009, 2014HH0017).
更新日期/Last Update: 2015-10-29