|本期目录/Table of Contents|

[1]贡 俊** 宋霄敏 高 艳 白红娟 王玉芬 韩晋仙.培养条件对脱硫脱硫弧菌合成纳米硫化铅的影响*[J].应用与环境生物学报,2016,22(02):206-212.[doi:10.3724/SP.J.1145.2015.10024]
 GONG Jun**,SONG Xiaomin,GAO Yan,et al.The effect of culture condition on synthesis of nanoparticles lead sulfide byDesulfovibrio desulfuricans*[J].Chinese Journal of Applied & Environmental Biology,2016,22(02):206-212.[doi:10.3724/SP.J.1145.2015.10024]
点击复制

培养条件对脱硫脱硫弧菌合成纳米硫化铅的影响*()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年02期
页码:
206-212
栏目:
研究论文
出版日期:
2016-04-25

文章信息/Info

Title:
The effect of culture condition on synthesis of nanoparticles lead sulfide byDesulfovibrio desulfuricans*
作者:
贡 俊1** 宋霄敏2 高 艳2 白红娟2 王玉芬1 韩晋仙1
1山西财经大学环境经济学院 太原 0300062中北大学化工与环境学院 太原 030051
Author(s):
GONG Jun1** SONG Xiaomin2 GAO Yan2 BAI Hongjuan2 WANG Yufen1 & HAN Jinxian1
1Department of Environmental Economics, Shanxi University of Finance and Economics, Taiyuan 030006, China2College of Chemical & Environment Engineering, North University of China, Taiyuan 030051, China
关键词:
脱硫脱硫弧菌纳米硫化铅合成pH值温度
Keywords:
Desulfovibrio desulfuricans nanoparticles PbS synthesis pH temperature
分类号:
Q939.9
DOI:
10.3724/SP.J.1145.2015.10024
摘要:
研究pH值、温度条件对脱硫脱硫弧菌合成硫化铅纳米产物的影响,并分别用X射线衍射、能谱和高分辨率透射电镜对产物的形貌进行分析. 结果显示,在不同pH值和温度条件下,脱硫脱硫弧菌对铅离子的转化率均在98%以上,pH为7和温度为30 ℃时,铅的转化率达到99.7%. 随着反应体系初始pH值由5增大至8,制得的纳米硫化铅由近球形逐渐转变为杆状颗粒,粒径由10-15 nm逐渐增大至15-30 nm,pH值为9时,制备出了具有特殊形貌单分散的不规则状纳米硫化铅,粒径为10-25 nm. 在15-30 ℃下,温度的改变对产物的形貌以及尺寸大小没有明显影响,制备的纳米硫化铅粒子均呈不规则杆状,粒径大小主要分布在15-30 nm范围内. 铅离子进入细胞内与硫化物结合生成纳米硫化铅,然后再释放到溶液中. 综上,不同pH条件下脱硫脱硫弧菌合成了不同形貌的纳米硫化铅,温度对产品形貌影响不大,脱硫脱硫弧菌对铅离子均有较高的转化率,纳米硫化铅可以在菌体内部形成;脱硫脱硫弧菌合成纳米硫化铅产品具有简单、稳定、粒径较小等优点,可为生物合成纳米产品提供借鉴. (图9 参18)
Abstract:
Nanoparticles PbS is synthesized by Desulfovibrio desulfuricans under different conditions with advantages ofsimplicity, stability and small particle size, which is a good example of biological synthesis of nanometer products. Thisresearch investigated the effects of processing variable changes including pH and temperature on the synthesis of nanoparticlesPbS products by D. desulfuricans. The microstructure of the PbS nanoparticles was analyzed by XRD, EDS and HRTEM,respectively. And the mechanism was also studied. The conversion rate of Pb2+ as over 98% under all pH and temperatureconditions, up to 99.7% with pH 7 and 30 °C. With the increase of pH from 5 to 8, the shape of PbS nanoparticles changed fromspheroidal to rod and the particle sizes enlarged from 10-15 nm to 15-30 nm. The monodisperse irregular nanoparticles PbSwere produced with 10-25 nm under pH 9. The temperature change between 10 °C and 35 °C had no effect on the shape or sizeof nanoparticles PbS, which kept irregular rods and 15-30 nm. Nanoparticles PbS was produced by Pb2+ and sulfide in the cellsand released into the solution. The results indicated that the pH change may cause morphology variation in PbS nanoparticles,but the temperature has little impact on them. D. desulfuricans has high conversion rate of Pb2+. Nanoparticles PbS can beformed in the cells.

参考文献/References:

1 Zhang BH, Guo FQ, Yang LH, Wang JJ. Tunable synthesis of multishapedPbS via L-cysteine assisted solvothermal method [J]. J CrystGrowth, 2014, 405: 142-1492 Anukorn P, Titipun T, Budsabong K, Phuruangrat A, ThongtemT, Kuntalue B, Thongtem S. Characterization of cubic and star-shapeddendritic PbS structures synthesized by a solvothermal method [J]. MaterLett, 2012, 81: 55-583 Anirban D, Chien M. Ultrasound-assisted synthesis of PbS quantum dotsstabilized by 1,2-benzenedimethanethiol and attachment to single-walledcarbon nanotubes [J]. Ultrason Sonochem, 2014, 12 (2): 892-9004 金芳. 硫化物纳米晶的可控合成及光催化性能研究[D]. 南京:南京理工大学, 2013 [Jin F. Controlled synthesise of sulfide nanocrystalsand their photocatalysis properties [D]. Nanjing: Nanjing University ofScience & Technology, 2013]5 Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, IversonBL. Bacterial biosynthesis of cadmium sulfide nanocrystals [J]. ChemBiol, 2004, 11: 1553-15596 Senapati US, Sarkar D. Characterization of biosynthesized zinc sulphidenanoparticles using edible mushroom Pleurotuss ostreatu [J]. Indian JPhys, 2014, 88 (6): 557-5627 Rajeshkumar S, Ponnanikajamideen M, Malarkodi C, MaliniM, Annadurai G. Microbe-mediated synthesis of antimicrobialsemiconductor nanoparticles by marine bacteria [J]. J Nanostruct Chem,2014, 4: 96-1028 Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, PaknikarKM. Microbial synthesis of semiconductor PbS nanoparticales, theircharacterization, and their use in the fabrication of an ideal diode [J].Biotechnol Bioeng, 2002, 78: 583-5889 Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfidenanoparticles by the lead resistant marine yeast, Rhodosporidiumdiobovatum [J]. Biotechnol Progr, 2011, 27 (5): 1464-146910 AnalK J, Prasad K. PbS nanoparticles:biosynthesis and characterization[J]. Intern J Nanoparticles, 2012, 5 (4): 369-37911 Bai HJ, Zhang ZM. Microbial synthesis of semiconductor lead sulfidenanoparticles using immobilized Rhodobacter sphaeroides [J]. MaterLett, 2009, 63: 764-76612 Gong J, Zhang ZM, Bai HJ, Yang GE. Microbiological synthesis ofnanophase PbS by Desulfotomaculum sp. [J]. Sci China Ser E, 2007, 50(3): 257-38413 贡俊, 张肇铭, 穆遥. 一株脱硫菌的分离和脱硫动力学[J]. 环境工程学报, 2012, 6 (4): 1310-1314 [Gong J, Zhang ZM, Mu Y. Isolation of adesulfurization strain and desulfurization dynamics [J]. Chin J EnvironEng, 2012, 6 (4): 1310-1314]14 Postgate JR. The Sulfate Reducing Bacteria [M]. Cambridge, UK:Cambridge University Press, Cambridge, UK, 198415 宋宵敏, 白红娟, 贡俊, 高艳, 李荣伟. 铅和锌抑制硫酸盐还原菌生长的毒性效应[J]. 化工技术与开发, 2015, 44 (2): 44-46 [Song XM, BaiHJ, Gong J, Gao Y, Li RW. Toxic effects of Pb2+ and Zn2+ on inhibitionof sulfate reducing bacteria growth [J]. Chem Intermed, 2015, 44 (2):44-46]16 国家环境保护总局编. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002 [State Environmental Protection Administration.Determination Methods for Examination of Water and Wastewater [M].Beijing: China Environmental Science Press, 2002]17 John GH. Bergey’s Manual of Determinative Bacteriology [M]. 4th Ed.Baltimore: Williams and Wilkns Co, 199418 Shinryo Y, Tsugio S. Cerium oxide for sunscreen cosmetics [J]. J SolidState Chem, 2003, 171: 7

更新日期/Last Update: 2016-04-25