|本期目录/Table of Contents|

[1]李静,张瀚能,赵翀,等.高效纤维素降解菌分离筛选、复合菌系构建及 秸秆降解效果分析*[J].应用与环境生物学报,2016,22(22卷04):689-698.[doi:10.3724/SP.J.1145.2015.10040]
 LI Jing,ZHANG Hanneng,ZHAO Chong,et al.Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system*[J].Chinese Journal of Applied & Environmental Biology,2016,22(22卷04):689-698.[doi:10.3724/SP.J.1145.2015.10040]
点击复制

高效纤维素降解菌分离筛选、复合菌系构建及 秸秆降解效果分析* ()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
22卷
期数:
2016年22卷04期
页码:
689-698
栏目:
研究论文
出版日期:
2016-08-25

文章信息/Info

Title:
Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system*
作者:
李静张瀚能赵翀张金羽张琪张靖莹刘茂柯陈强赵珂
1四川农业大学资源学院微生物学系 成都 611130 2四川省农业科学院水稻高粱研究所 泸州 646000
Author(s):
LI Jing1 ZHANG Hanneng1 ZHAO Chong1 ZHANG Jinyu1 ZHANG Qi1 ZHANG Jingying1 LIU Maoke2 CHEN Qiang1 & ZHAO Ke1**
1Department of Microbiology, College of Resource and Environment, Sichuan Agricultural University, Chengdu 611130, China 2Rice and Sorghum Institute, Sichuan Academy of Agricultural Sciences, Luzhou 646000, China
关键词:
纤维素降解分离鉴定复合菌系滤纸崩解玉米秸秆
Keywords:
cellulose decomposition separation and identification complex microbial system filter paper degradation corn straw
分类号:
Q939.96
DOI:
10.3724/SP.J.1145.2015.10040
摘要:
从川西高原贡嘎山区杜鹃林下土壤中分离纤维素降解菌,构建具有高效降解纤维素能力的复合菌系,并对秸秆降解效果进行分析,为农业废弃物的循环利用提供菌种资源和理论依据. 样品及经风干、高温等预处理后,采用平板涂布法进行分离,共获得79株菌株;通过刚果红实验对分离获得的菌株进行初步筛选,运用DNS法测定各菌株的羧甲基纤维素酶活(Carboxymethyl cellulase, CMCase),复筛得到15株具有CMCase活能力的菌株. 经滤纸条崩解实验、秸秆崩解实验及降解率测定,最终确定了各菌株的纤维素降解能力,进一步经拮抗实验,选取相互无拮抗的菌株构建5个复合菌系:A(112、146、156、171),B(145、147、150、153),C (110、116、174),D(147、154、171),E(145、146、150、152、153). 复合菌系的滤纸酶活(Fpase)与秸秆降解率测定结果显示,组合C对秸秆的降解率较单菌株116提高了50.71%,组合D对秸秆的降解率较单菌株154提高了41.54%. 经形态学和分子生物学鉴定,纤维素降解能力比较好的两个组合中的菌株分别被鉴定为类芽孢杆菌属(Paenibacillus sp.)、芽孢杆菌属(Bacillus sp.)、不动杆菌属(Acinetobacter sp.)以及链霉菌属(Streptomyces sp.). 本研究表明,复合菌系纤维素降解能力优于单一菌株,C、D 两组复合菌系表现出较高的纤维素降解能力,具有进一步开发的价值. (图8 表4 参32)
Abstract:
This study aimed to isolate cellulose decomposing microbes from the soil under Rhododendron sp. in Gongga Mountain and to construct a complex microbial system with high cellulolytic ability. All together 79 strains were isolated using two pretreatment approaches. Congo red medium and DNS method were employed to evaluate their carboxymethyl cellulase activity. The results showed 15 strains having a great CMCase ability. Subsequently, the cellulose degradation ability of the 15 strains was determined by analysis results of filter paper degradation, corn straw degradation and degradation rate of corn straw. Based on the antagonism effect among strains, the isolates with high efficiency in cellulose decomposing ability and no antagonism were selected to construct five complex microbial systems: A (112, 146, 156, 171), B (145, 147, 150, 153), C (110, 116, 174), D (147, 154, 171), and E (145, 14, 150, 152, 153), all of which were further measured the filter paper enzyme activity and corn straw degradation rate. The results showed that the corn straw degradation rate of community C was 50.71% higher than that of 116 single strain belonging to community C, and that the corn straw degradation rate of strains community D was 41.54% higher than that of 154 single strain belonging to community D. The 16S rRNA gene sequence similarity between the six isolates of two communities and the typical strains published in Genbank was 99% to 100%, and those sequences belonged to four genera Paenibacillus sp., Bacillus sp., Acinetobacter sp. and Streptomyces sp. Our research revealed that the cellulose decomposing ability of complex microbial system is higher than that of single strain. Both Complex C and D showed a great capacity in cellulose decomposing, therefore of great exploitation value.

参考文献/References:

1 吴文韬, 鞠美庭, 刘金鹏, 刘博群, 佟树敏. 一株纤维素降解菌的分离, 鉴定及对玉米秸秆的降解特性[J]. 微生物学通报, 2013, 40 (4): 712-719 [Wu WT, Ju MT, Liu JB, Liu BQ, Tong SM. Isolation, identification and corn stalk degradation characteristics of cellulose-degrading bacterial strain NH11 [J]. Microbiology, 2013, 40 (4): 712-719] 2 范力敏, 季萍, 陈晓湘, 孙韦强. 转化纤维素资源生成酒精的研究[J]. 环境科学学报, 1990, 10 (3): 356-358 [Fan LM, Ji P, Chen XX, Sun WQ. Transformation of resource generation cellulosic ethanol research [J]. Acta Sci Circumst, 1990, 10 (3): 356-358] 3 Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL. The path forward for biofuels and biomaterials[J]. Science, 2006, 311 (5760): 484-489. 4 付丽丽. 作物秸秆纤维素降解菌的分离与筛选[D]. 杭州: 浙江大学, 2012 [Fu LL. Isolation and screening of cellulose-degrading bacteria for crop straws [D]. Hangzhou: Zhejiang University, 2012] 5 Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresour Technol, 2008, 99 (13): 5270-5295 6 Zeng X, Ma Y, Ma L. Utilization of straw in biomass energy in China [J]. Renewable Sustainable Energy Rev, 2007, 11 (5): 976-987 7 Sarria-Alfonso V, Sánchez-Sierra J, Aguirre-Morales M, Gutiérrez-Rojas I, Moreno-Sarmiento N, Poutou-Pinales RA. Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation [J]. Indian J Microbiol, 2013, 53 (2): 199-207 8 Guo H, Chang J, Yin Q, Wang P, Lu M, Wang X, Dang X. Effect of the combined physical and chemical treatments with microbial fermentation on corn straw degradation[J]. Bioresour Technol, 2013, 148: 361-365 9 Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiol Mol Biol Rev, 2002, 66 (3): 506-577 10 Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability [J]. Appl Microbiol Biotechnol, 2002, 59 (4-5): 529-534 11 Lu W-J, Wang H-T, Yang S-J, Wang Z-C, Nie Y-F. Isolation and characterization of mesophilic cellulose-degrading bacteria from flower stalks-vegetable waste co-composting system [J]. J Gen Appl Microbiol, 2005, 51 (6): 353-360 12 Lo Y-C, Su Y-C, Cheng C-L, Chang J-S. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis [J]. Int J Hydrogen Energy, 2011, 36 (21): 13955-13963 13 林远声, 列璞怡. 降解纤维素的真菌分离, 筛选及其酶活测定[J]. 中山大学学报: 自然科学版, 2004, 43 (1): 82-85 [Lin YS, Lie PY. Degradation of cellulose fungi separation,screening and determination of enzyme activity. Acta Sci Nat Univ Sunyatseni, 2004, 43: 82-85] 14 尚婷婷, 李全宏, 邓尚贵. 高效降解纤维素菌系的筛选分离及复合菌系的构建[J]. 中国农学通报, 2014, 30 (31): 254-260 [Shang TT, Li QG, Deng SG. Screening of straw cellulose degrading microorganisms and construction of a high efficient complex microbial system [J]. Chin Agric Sci Bull, 2014, 30 (31): 254-260] 15 王海滨, 韩立荣, 冯俊涛, 张兴. 高效纤维素降解菌的筛选及复合菌系的构建[J]. 农业生物技术学报, 2015, 23 (4): 421-431 [Wang HB, Han LR, Feng JT, Zhang X. Screening of highly efficient cellulose degradation microbes and construction of composite strains[J]. J Agric Biotechnol, 2015, 23 (4): 421-431] 16 杨林丽. 纤维素降解菌筛选及混合菌种纤维素降解能力测定. 杨凌: 西北农林科技大学, 2013: 22 [Yang LL. Screening of cellulose-decomposing bacteria and measuring activity of CMCase of the mixed bacteria [D]. Yangling: Northwest Agriculture&Forest University, 2013: 22] 17 萨如拉, 高聚林, 于晓芳, 胡树平. 玉米秸秆低温降解复合菌系的筛选[J]. 中国农业科学, 2013, 46 (19): 4082-4090 [Sarula, Gao JL, Yu XF, Hu SP. Screening of Low Temperature Maize Stalk Decomposition Microorganism [J]. Sci Agric Sin, 2013, 46 (19): 4082-4090] 18 袁红莉, 王贺祥. 农业微生物学及实验教程. 北京: 中国农业大学出版社, 2009: 441-443 [Yuan HL, Wang HX, Li Y, Song Y, Wu K. Agricultural microbiology and experiment tutorial [M]. Beijing: China Agricultural University Press, 2009: 441-443] 19 冯广达, 陈美标, 羊宋贞, 朱红惠. 用于PCR扩增的细菌DNA提取方法比较[J]. 华南农业大学学报, 2013, 34 (3): 439-442 [Feng GD, Chen MB, Yang SZ, Zhu HH. A comparative study on bacteria DNA extraction methods used for PCR amplification. J South China Agric Univ, 2013, 34 (3): 439-442] 20 姜淑梅, 张龙, 戴世鲲, 李翔. 一种简单、有效的适于PCR操作的放线菌DNA提取方法[J]. 生物技术, 2007, 17 (1): 39-41 [Jiang SM, Zhang L, Dai SK, Li X. A quick and efficient method for genomic DNA extraction from actionbacteria [J]. Biotechnol, 2007, 17 (1): 39-41] 21 曹艳茹, 姜怡, 李有龙, 陈秀, 靳荣线, 和文祥. 孟加拉虎粪便放线菌的分离及其多样性[J]. 微生物学报, 2012, 52 (7): 816-824 [Cao YR, Jiang Y, Li YL, Chen X, Jin RX, He WX. Isolation methods and diversity of culturable fecal actinobacteria associated with Panthera tigris tigris in Yunnan Safari Park [J]. Microbiology, 2012, 52 (7): 816-824] 22 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28 (10): 2731-2739 23 陈燕, 周孙全, 郑奇士. 常温纤维素降解菌的分离与鉴定[J]. 上海交通大学学报(医学版), 2010, 30 (8): 1018 [Chen Y, Zhou SQ, Zheng QS, Zhou YJ, Wang Y, Tan YM. Isolation and Identification of cellulose-degrading bacteria under room temperature [J]. J Shanghai Jiaotong Univ, 2010, 30 (8): 1018-1021] 24 郭夏丽, 程小平, 杨小丽, 王岩. 高效玉米秸秆降解菌复合系的构建[J]. 中国农学通报, 2010, 26 (7): 261-266 [Guo XL, Yang XL, Li SY, Wang Y. Construction of composite consortia with high capacity of lignocellulose degradation [J]. Chin Agric Sci Bull, 2010, 26 (7): 261-266] 25 罗辉. 高效厌氧纤维素降解菌的筛选, 复合菌系构建及应用研究[D]. 北京: 中国农业科学院, 2008 [Isolation of effective cellulytic anaerobic bacteria, construction and application of mix culture [D]. Beijing: Chinese Academy of Agricultural Sciences, 2008] 26 伍时华, 徐雅飞, 黄翠姬. 降解纤维素菌株的筛选[J]. 食品科技, 2006, 31 (8): 50-52 [Wu SH, Xu YF, Huang CJ. Study on screening of cellulose degradation strains [J]. Food Sci Technol, 2006, 31 (8): 50-52] 27 Brady SK, Sreelatha S, Feng Y, Chundawat SP, Lang MJ. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps [J]. Nat Commun, 2015, 6: 1-9 28 陈春岚, 李楠. 细菌纤维素酶研究进展[J]. 轻工科技, 2007, 23 (1): 18-20 [Chen CL, Li N. Bacterial cellulose enzyme is reviewed [J]. Guangxi J Light Ind, 2007, 23 (1): 18-20] 29 Pragya R, Yasmin A, Anshula J. An insight into agricultural properties of actinomycetes [J]. Int J Res Biol Sci, 2012, 1: 7-12 30 de Menezes AB, Prendergast-Miller MT, Poonpatana P, Farrell M, Bissett A, Macdonald LM, Toscas P, Richardson AE, Thrall PH. C/N Ratio Drives Soil actinobacterial cellobiohydrolase gene diversity [J]. Appl?Environ?Microbiol, 2015, 81 (9): 3016-3028 31 孟建宇, 李蘅, 樊兆阳, 冯福应. 低温纤维素降解菌的分离与鉴定[J]. 应用与环境生物学报, 2014, 20 (1): 152-156 [Meng JY, Li H, Fan ZY, Feng FY. Isolation and identification of cellulose-degrading bacteria under low temperature. Chin J Appl Environ Biol, 2014, 20 (1): 152-156] 32 宋波, 羊键. 一株降解纤维素的放线菌的筛选及其产酶条件的研究[J]. 微生物学杂志, 2005, 25 (5): 36-39 [Song B, Yang J. Screening of a cellulose-decomposing actinomyces strain and its enzyme-producing conditions [J]. J Microbiol, 2005, 25 (5): 36-39]

相似文献/References:

[1]甘烦远,郑光植,彭丽萍,等.红豆杉培养细胞紫杉醇的分离及鉴定[J].应用与环境生物学报,1996,2(02):184.
 Gan Fanyuan,Zheng Guangzhi,Peng Liping,et al.ISOLATION AND IDENTIFICATION OF TAXOL FROM CULTURED CELLS OF TAXUS[J].Chinese Journal of Applied & Environmental Biology,1996,2(22卷04):184.
[2]王佳婧,刘晓风,袁月祥,等.厌氧纤维素降解产氢复合菌系L-3的研究[J].应用与环境生物学报,2010,16(01):104.[doi:10.3724/SP.J.1145.2010.00104]
 WANG Jiajing,LIU Xiaofeng,YUAN Yuexiang,et al.Cellulose Degradation and Hydrogen Production by Anaerobic Microbial Consortium L-3[J].Chinese Journal of Applied & Environmental Biology,2010,16(22卷04):104.[doi:10.3724/SP.J.1145.2010.00104]
[3]王芳,赖泳红,米静,等.不同陈化烟叶叶面高温微生物多样性[J].应用与环境生物学报,2012,18(03):471.[doi:10.3724/SP.J.1145.2012.00471]
 WANG Fang,LAI Yonghong,MI Jing,et al.Diversity of Thermophilic Microorganisms on Fermented Leaves of Flue-cured Tobacco[J].Chinese Journal of Applied & Environmental Biology,2012,18(22卷04):471.[doi:10.3724/SP.J.1145.2012.00471]
[4]张晓喻,梁健,李宇飞,等.裸蒴根的化学成分[J].应用与环境生物学报,2012,18(06):1014.[doi:10.3724/SP.J.1145.2012.01014]
 ZHANG Xiaoyu,LIANG Jian,LI Yufei,et al.Chemical Constituents from Roots of Gymnotheca chinensis[J].Chinese Journal of Applied & Environmental Biology,2012,18(22卷04):1014.[doi:10.3724/SP.J.1145.2012.01014]
[5]刘建,李丹丹,杨芳,等.一株积聚四氢嘧啶的青海湖盐单胞菌的分离及特性[J].应用与环境生物学报,2012,18(06):1049.[doi:10.3724/SP.J.1145.2012.01049]
 LIU Jian,LI Dandan,YANG Fang,et al.Isolation and Characteristics of a Halomonas sp. Accumulating Ectoine from Qinghai Lake[J].Chinese Journal of Applied & Environmental Biology,2012,18(22卷04):1049.[doi:10.3724/SP.J.1145.2012.01049]
[6]范光森,严烨,杨绍青,等.一株产木聚糖酶嗜热真菌樟绒枝霉的鉴定及其产纤维质降解酶系分析[J].应用与环境生物学报,2013,19(01):48.[doi:10.3724/SP.J.1145.2013.00048]
 FAN Guangsen,YAN Ye,YANG Shaoqing,et al.Identification of a Xylanase-producing Thermophilic Fungus, Malbranchea cinnamomea, and Analysis of Its Cellulosic Enzymes[J].Chinese Journal of Applied & Environmental Biology,2013,19(22卷04):48.[doi:10.3724/SP.J.1145.2013.00048]
[7]宋培勇,李林,肖仲久,等.4株桫椤内生细菌的分离鉴定及系统发育分析[J].应用与环境生物学报,2013,19(03):528.[doi:10.3724/SP.J.1145.2013.00528]
 SONG Peiyong,LI Lin,XIAO Zhongjiu,et al.Identification and Phylogenetic Analysis of Four Endophytic Bacteria Isolated from Alsophila spinulosa[J].Chinese Journal of Applied & Environmental Biology,2013,19(22卷04):528.[doi:10.3724/SP.J.1145.2013.00528]
[8]胡桂萍,宋凤琴,刘波,等.氟氯氰菊酯降解菌FLQ-5的筛选鉴定及降解特性[J].应用与环境生物学报,2013,19(05):851.[doi:10.3724/SP.J.1145.2013.00851]
 HU Guiping,SONG Fengqing,LIU Bo,et al.Isolation, Identification and Degradation Characteristics of Cyfluthrin-degrading Strain FLQ-5[J].Chinese Journal of Applied & Environmental Biology,2013,19(22卷04):851.[doi:10.3724/SP.J.1145.2013.00851]
[9]唐仕姗,杨万勤,何伟,等.川西亚高山3种优势林木不同径级根系分解及木质素、纤维素降解特征[J].应用与环境生物学报,2015,21(04):745.[doi:10.3724/SP.J.1145.2015.01043]
 TANG Shishan,YANG Wanqin,HE Wei,et al.Root decomposition, lignin and cellulose degradation of three dominant subalpine trees of different diameters in western Sichuan[J].Chinese Journal of Applied & Environmental Biology,2015,21(22卷04):745.[doi:10.3724/SP.J.1145.2015.01043]
[10]张小飞,夏凡,杨兴伟,等.黄海棠中的多酚类化学成分[J].应用与环境生物学报,2017,23(05):924.[doi:10.3724/SP.J.1145.2016.12015]
 ZHANG Xiaofei,XIA Fan,et al.Polyphenolic chemical constituents from Hypericum ascyron[J].Chinese Journal of Applied & Environmental Biology,2017,23(22卷04):924.[doi:10.3724/SP.J.1145.2016.12015]

更新日期/Last Update: 2016-08-25