|本期目录/Table of Contents|

[1]李琪,方扬,许亚良,等.少根紫萍对微污染地表水的净化及淀粉积累能力[J].应用与环境生物学报,2018,24(06):1324-1329.[doi:10.19675/j.cnki.1006-687x.2018.02023]
 LI Qi,et al..Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1324-1329.[doi:10.19675/j.cnki.1006-687x.2018.02023]
点击复制

少根紫萍对微污染地表水的净化及淀粉积累能力
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1324-1329
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch
作者:
李琪 方扬 许亚良 赖烦 苏羽华 靳艳玲 赵海
1中国科学院成都生物研究所 成都 610041 2中国科学院大学 北京 100049 3中国科学院环境与应用微生物重点实验室 成都 610041
Author(s):
LI Qi et al.
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu 610041, China
关键词:
少根紫萍水质净化高淀粉积累微污染地表水氮磷去除
Keywords:
Landoltia punctata water purification starch accumulation micro-polluted surface water nitrogen and phosphorus removal
分类号:
X703 + Q949.717.3
DOI:
10.19675/j.cnki.1006-687x.2018.02023
摘要:
根据地表水环境质量标准研究少根紫萍(Landoltia punctata)对微污染地表水的净化效果,同时,对其淀粉积累能力进行评价. 结果显示,少根紫萍对微污染地表水体可以实现深度处理,经处理的Ⅴ类、劣Ⅴ类水体中氨氮(NH4+-N)和总磷(TP)均在1 d内提升一个水质级别,在3 d内达到地表Ⅱ类水标准(NH4+-N < 0.15 mg/L,TP < 0.09 mg/L),且氮、磷去除率均达到98.5%和82.9%以上. 此外,少根紫萍在快速修复水体的同时能大量积累淀粉. 处理3 d,Ⅴ类和劣Ⅴ类水处理中浮萍干重的淀粉含量分别为28.38%、21.57%,15 d后达到52.15%、49.58%. 另外研究发现,额外添加二氧化碳(CO2)对淀粉积累有进一步促进作用. 处理3 d淀粉含量相比未添加CO2提升了55.7%,平均淀粉积累速率提高了2.72倍. 因此,少根紫萍不仅能够快速净化微污染水体,同时也能积累大量的淀粉干物质,结果可为实际污水处理及后期少根紫萍资源化应用提供参考. (图4 表2 参35)
Abstract:
Aquatic plant duckweed has remarkable potential in nutritional water purification and starch accumulation; at present, it has received increasing attention. This study aimed to investigate the ability of duckweed in nutrient recovery from micro-polluted surface water; further, the starch accumulation capacity of duckweed was evaluated. The results showed that duckweed can achieve better depth treatment of the micro-polluted surface water, within 1-day treatment, by duckweed. Ammonia nitrogen and total phosphorus status of Class V and worse than class V water was improved to a superior level; moreover, the nitrogen and phosphorus removal rates were 98.5% and 82.9%, respectively. In addition, duckweed can rapidly accumulate starch during water treatment. The starch content of duckweed was 28.38% and 21.57% (dry weight) in Class V and worse than class V wastewater after 3 days of treatment, respectively, and reached 52.15% and 49.58% on day 15. Moreover, additional carbon dioxide (CO2) supplementation promoted the starch production. The starch content increased by 55.7% compared with that of control, and the average starch accumulation rate increased by 2.72 times in 3 days. Therefore, duckweed can not only rapidly purify micro-polluted water, but also accumulate a large amount of starch. This study forms the basis for wastewater treatment and post-treatment utilization of duckweed biomass.

参考文献/References:

1. Xu Z, Zhang X, Xie J. Total nitrogen concentrations in surface water of typical agro- and forest ecosystems in China, 2004-2009 [J]. PLoS ONE, 2014, 2014 , 8 (4): 561-569
2. 封志明, 杨艳昭, 游珍. 中国人口分布的水资源限制性与限制度研究[J]. 自然资源学报, 2014, 29 (10): 1637-1648 [Feng ZM, Yang YZ, You Z. Research on the water resources restriction on population distribution in China [J]. J Nat Res, 2014, 29 (10): 1637-1648 ]
3. “准四类水”超净排放项目-且行且谨慎[EB/OL]. 2017-07-16. [2018-
a) 02-10]. http://www.sohu.com/a/154792069_653348
4. 毛杉杉, 李岚, 王敏雅, 陆菲, 张琼, 曹访. 6株浮萍的污水处理能力与淀粉积累能力的差异性分析[J]. 江苏农业科学, 2012, 40 (12): 351-354 [Mao SS, Li L, Wang MY, Zhang G, Cao F. 6 strains of duckweed in the sewage treatment capacity and starch accumulation capacity analysis of the differences [J]. Jiangsu Agric Sci, 2012, 40 (12): 351-354]
5. Xu J, Shen G. Growing duckweed in swine wastewater for nutrient recovery and biomass production [J]. Bioresour Technol, 2011, 102 (2): 848-853
6. Xu Y, Ma S, Huang M, Peng M, Bog M, Sree KS. Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae) [J]. Hydrobiologia, 2015, 743 (1): 75-87
7. Basílico G, Cabo LD, Magdaleno A. Poultry effluent bio-treatment with Spirodela intermedia, and periphyton in mesocosms with water recirculation [J]. Water Air Soil Pollut, 2016, 227 (6): 1-11
8. Bergmann BA, Cheng J, Classen J. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation [J]. Bioresour Technol, 2000, 73 (1): 13-20
9. Cheng JJ, Bergmann BA, Classen JJ. Nutrient recovery from swine lagoon water by Spirodela punctata [J]. Bioresour Technol, 2002, 81 (1): 81-85
10. Bonomo L, Pastorelli G, Zambon N. Advantages and limitations of duckweed-based wastewater treatment systems [J]. Water Sci Technol, 1997, 35 (5): 239-246
11. Guo L, Ding YQ, Xu Y, Li ZD, Jin Y, He KZ. Responses of Landoltia punctata to cobalt and nickel: removal, growth, photosynthesis, antioxidant system and starch metabolism [J]. Aquat Toxicol, 2017, 190: 87-93
12. Xiao Y, Fang Y, Jin Y, Zhang G. Culturing duckweed in the field for starch accumulation [J]. Ind Crops Prod, 2013, 48 (2013): 183-190
13. Bonomo L, Pastorelli G, Zambon N. Advantages and limitations of duckweed-based wastewater treatment systems [J]. Water Sci Technol, 1997, 35 (5): 239-246
14. Ge X, Zhang N, Phillips G C, Phillips GC. Growing Lemna minor, in agricultural wastewater and converting the duckweed biomass to ethanol [J]. Bioresour Technol, 2012, 124 (337): 485-488
15. Liu Y, Fang Y, Huang M, Jin Y, Sun J , Tao X. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk [J]. Biotechnol Biof, 2015, 8 (1): 57-69
16. Bergmann BA, Cheng J, Classen J, Stome AM. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation [J]. Bioresour Technol, 2000, 73 (1): 13-20
17. Liu Y, Fang Y, Huang M, Sun J , Tao X. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk [J]. Biotechnol Biof, 2015, 8 (1): 57-69
18. Zhang L, Chen Q, Jin Y, Guang J, Wang Z. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG) [J]. Fuel Proc Technol, 2010, 91 (12): 1845-1850
19. 谢朦, 张飞, 章莹颖, 秦霄, 马炯, 肖炘. 3种浮萍对富营养化水体的修复[J]. 环境工程学报, 2016, 10 (5): 2447-53 [Xie M, Zhang F, Zhang YY, Qing X, Mang J, Xiao X. Three kinds of duckweed on restoration of eutrophication of water bodies [J]. J Environ Eng, 2016, 10 (5): 2447-2453]
20. Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production [J]. Plant Biol, 2015, 17: 82-90
21. Peng JF, Wang BZ, Song YH, Yuan P. Modeling N transformation and removal in a duckweed pond: model development and calibration [J]. Ecol Modell, 2007, 206 (1): 147-152
22. 沈根祥. 利用浮萍净化氮磷污水机理及其优化工艺条件研究[D]. 杭州: 浙江大学, 2005 [Shen GX. Use of duckweed purification mechanism of nitrogen and phosphorus wastewater and its optimization of process conditions [D]. Hangzhou: Zhejiang University, 2005]
23. 黄辉, 刘杰, 赵浩, 饶群, 徐炎华. 浮萍放养体系对污水氮磷的净化效果[J]. 农业环境科学学报, 2007, 26 (s1): 242-245 [Huang H, Liu J, Zhao H, Rao Q, Xiu YH. Duckweed grazing system for sewage purification efficiency of nitrogen and phosphorus [J]. J Agric Environ Sci, 2007, 26 (s1): 242-245 ]
24. 于斌, 蔡树美, 郎莎莎, 钱晓晴. 浮萍净化N?P污染性能的研究[J]. 安徽农业科学, 2009, 37 (21): 102-103 [Yu B, Cai SM, Lang SS, Qian XQ. Duckweed purification performance of N, P pollution research [J]. J Anhui Agric Sci, 2009, 37 (21): 102-103]
25. Smith VH, Tilman GD, Nekola JC. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems [J]. Environ Pollut, 1999, 100 (1-3): 179-196
26. Cui W, Cheng JJ. Growing duckweed for biofuel production: a review [J]. Plant Biol, 2015, 17 (s1): 16-23
27. 蔡树美. 不同条件下浮萍磷吸收效率及其作用机理[D]. 扬州: 扬州大学, 2011 [Cai SM. Under the condition of different duckweed phosphorus uptake efficiency and its mechanism [D]. Yangzhou: Yangzhou University, 2011]
28. Xie J, Zhang X, Xu Z, Tang X. Total phosphorus concentrations in surface water of typical agro- and forest ecosystems in China, 2004-2010 [J]. Front Environ Sci Eng, 2014, 8 (4): 561-569
29. Vermaat JE, Hanifm K. Performance of common duckweed species (Lemnaceae ) and the waterfern Azolla filiculoides on different types of waste water [J]. Water Res, 1998, 32 (9): 2569-2576
30. Classen JJ, Cheng JJ, Liehr SK, Chaiprapat S. Role of internal nutrient storage in duckweed growth for swine wastewater treatment [J]. Trans ASAE, 2005, 48 (6): 2247-2258
31. Cheng JJ, Stomp AM. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed [J]. CLEAN - Soil Air Water, 2009, 37 (1): 17-26
32. Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation [J]. Biotechnol Biof, 2013, 6 (1): 299-308
33. Xu J, Cui W, Cheng JJ, Stomp AM. Production of high-starch duckweed and its conversion to bioethanol [J]. Biosyst Eng, 2011, 110 (2): 67-72
34. Zhang S, Fu W, Zhang Z, Y Fan, T Liu. Effects of elevated CO2 concentration and temperature on some physiological characteristics of cotton (Gossypium hirsutum L.) leaves [J]. Environ Experim Bot, 2016, 133: 108-117
35. Zhao Y, Fang Y, Jin Y, Huang J, Bao S. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production [J]. Plant Biol, 2015, 17 (s1): 82-90
36.

相似文献/References:

[1]丁彦强,方扬,靳艳玲,等.基于叶绿体基因组的浮萍亚科系统进化[J].应用与环境生物学报,2017,23(2):215.[doi:10.3724/SP.J.1145.2016.04036]
 DING Yanqiang,FANG Yang,et al.Systematic evolution of Lemnoideae determined based on chloroplast genome analysis[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):215.[doi:10.3724/SP.J.1145.2016.04036]
[2]李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(01):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
 LI Zhidan,FANG Yang,et al.Transcription factors and their expression in $Landoltia punctata$ under nutrient starvation[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):97.[doi: 10.19675/j.cnki.1006-687x.2017.04015]
[3]刘梅,原居林,何海生,等.微藻在南美白对虾养殖废水中的生长及净化效果[J].应用与环境生物学报,2018,24(04):866.[doi:10.19675/j.cnki.1006-687x.2017.11012]
 LIU Mei,YUAN Julin,HE Haisheng,et al.Removal of nitrogen and phosphorus by eight strains of microalgae and their growth characteristics in Penaeus vannamei sewage[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):866.[doi:10.19675/j.cnki.1006-687x.2017.11012]
[4]王明秀,栾威,马欣荣,等.少根紫萍淀粉合成关键基因对寡营养胁迫的响应[J].应用与环境生物学报,2019,25(01):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]
 WANG Mingxiu,LUAN Wei,et al.Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata[J].Chinese Journal of Applied & Environmental Biology,2019,25(06):128.[doi:10.19675/j.cnki.1006-687x.2018.04021]

更新日期/Last Update: 2018-12-25