|本期目录/Table of Contents|

[1]左有璐,王振孟,习新强,等.川西北高寒草甸优势植物生物量分配对策[J].应用与环境生物学报,2018,24(06):1195-1203.[doi:10.19675/j.cnki.1006-687x.2018.03030]
 ZUO Youlu,et al..Plant biomass allocation strategies of the dominant species in an alpine meadow of northwestern Sichuan, China[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1195-1203.[doi:10.19675/j.cnki.1006-687x.2018.03030]
点击复制

川西北高寒草甸优势植物生物量分配对策()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1195-1203
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
Plant biomass allocation strategies of the dominant species in an alpine meadow of northwestern Sichuan, China
作者:
左有璐 王振孟 习新强 向双 孙书存
1中国科学院成都生物研究所,中国科学院山地生态恢复与生物资源利用重点实验室,生态恢复与生物多样性保育四川省重点实验室 成都 610041 2中国科学院大学 北京 100049
Author(s):
ZUO Youlu et al.
1 CAS Key Laboratory of?Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration?and?Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
异速生长生活史对策功能型生活型干扰草地返青植物人为干扰
Keywords:
allometry life-history strategy functional type lifeform disturbed grassland wintergreen plants anthropogenic disturbance
分类号:
Q945.79 : S812
DOI:
10.19675/j.cnki.1006-687x.2018.03030
摘要:
生物量分配是整个植株净碳获取的重要驱动因子,对植物未来的生长与繁殖具有直接的影响;川西北高寒草甸植物群落结构丰富、物种多样性高,研究高寒草甸不同类型植物的生物量分配格局对理解植物生活史对策有重要意义. 对川西北高寒草甸中天然草地、干扰草地和冬季返青草地等3类样地中不同功能型和生活型的植物共72个物种进行调查,采用标准化主轴估计(SMA)和异速生长分析(Allometric scaling analysis)的方法,比较研究不同植物类群的生物量分配对策. 结果显示:(1)不同功能型植物各构件生物量百分比差异显著,禾草的茎生物量百分比最高(60.60% ± 3.07%),莎草的根生物量百分比较高(37.49% ± 11.86%),杂草类植物(Forb)的叶生物量百分比更高(26.37% ± 1.64%),各构件生物量之间的异速生长斜率在各功能型间无显著差异且均呈显著的同速生长关系;(2)生活型影响植物各构件生物量百分比大小,一年生植物对茎和繁殖构件投入的生物量比例相对更高,多年生植物则将更多生物量投资到根部;(3)样地类型对杂草类植物各构件的生物量具有显著影响,天然草地植物和返青植物的叶片与繁殖分配比更高,而干扰草地植物的茎生物量分配比更高. 本研究表明植物功能型和生活型决定植物各构件生物量分配固有的异速生长关系,而人为干扰则显著影响植物的生物量大小,这对加强草地应对人类干扰和气候变化的响应研究以及高寒草甸生态系统的科学管理都有重要的理论与实践意义. (图4 表2 参39 附表2)
Abstract:
Plant biomass partitioning is an important driver of whole-plant net carbon gain, as biomass allocation could directly affect plant’s future growth and reproduction. Alpine meadow in the northwestern Sichuan was impressed by the abundant community structure and species diversity. This study on biomass allocation pattern of different functional types and lifeforms might help understand plant life-history strategy of alpine meadow plants. We investigated 72 dominant herbaceous species for their compartments, biomass, and morphological traits during 2012-2014. These plants were sampled from natural grassland, disturbed grassland, and wintergreen grassland; they belonged to three functional types (grass, sedge, and forb) and two lifeforms (annual and perennial). The scaling relationships between functional traits of these plants were analyzed using Model type II regression method to estimate the parameters of the allometric equations. (1) Biomass allocation proportion of components significantly differed among grasses, sedges, and forbs owing to phylogeny: grasses had the highest stem biomass percentage, sedges had higher root biomass percentage, and forbs had higher leaf biomass percentage, but the scaling relationships were not significantly different, and isometric scaling was noted between biomass components for the three functional types. (2) Moreover, plant lifeforms affected the biomass allocation proportion of components, owing to the shorter or longer turnover rate and investment strategy between annual and perennial species. Annuals allocated more biomass to the stem and reproduction organs, but perennials invested more biomass to the leaves and roots. (3) In addition, plants from different grassland types differed in both biomass and morphology traits. Moreover, forbs from natural grassland and wintergreen grassland had higher leaf and reproductive biomass, but those from disturbed grasslands had higher stem biomass. Our results suggest that the functional type and lifeform decide the inherent scaling relationships between components of plants, but anthropogenic disturbance significantly impacted the quantity of component biomass. This study has important theoretical and practical significance to understand the response of alpine plants to climate change and anthropogenic disturbance as well as to help in the scientific management of alpine meadow.

参考文献/References:

1. Wu JS, Shen ZX, Zhang XZ, Shi PL. Biomass allocation patterns of alpine grassland species and functional groups along a precipitation gradient on the northern Tibetan Plateau [J]. J Mount Sci, 2013, 10 (6): 1097-1108
2. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control [J]. New phytol, 2012, 193 (1): 30-50
3. Weiner J. Allocation, plasticity and allometry in plants [J]. Persp Plant Ecol Evol Syst, 2004, 6 (4): 207-215
4. 黎磊, 周道玮, 盛连喜. 密度制约决定的植物生物量分配格局[J]. 生态学杂志, 2011, 30 (8): 1579-1589 [Li L, Zhou DW, Sheng LX. Density dependence-determined plant biomass allocation pattern [J]. Chin J Ecol, 2011, 30 (8): 1579-1589]
5. Bloom AJ, Chapin FS, Mooney HA. Resource limitation in plants - an economic analogy [J]. Annu Rev Ecol Syst, 1985, 16: 363-392
6. McCarthy MC, Enquist BJ. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation [J]. Funct Ecol, 2007, 21 (4): 713-720
7. Enquist BJ, Niklas KJ. Global allocation rules for patterns of biomass partitioning in seed plants [J]. Science, 2002, 295 (5559): 1517-20
8. Kleyer M, Minden V. Why functional ecology should consider all plant organs: An allocation-based perspective [J]. Basic Appl Ecol, 2015, 16 (1): 1-9
9. Xiang S, Wu N, Sun SC. Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis [J]. Trees-Struct Funct, 2009, 23 (3): 637-647
10. 丁建林, 韩越, 包维楷, 向双. 岷江百合的生物量分配对策及其海拔效应[J]. 应用与环境生物学报, 2014, 20 (2): 254-260 [Ding JL, Han Y, Bao WK, Xiang S. Biomass allocation strategies of Lilium regale and their altitudinal effects [J]. Chin J Appl Environ Biol, 2014, 20 (2): 254-260]
11. Perkins SR, Owens MK. Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality [J]. Plant Ecol, 2003, 168 (1): 107-120
12. Wright IJ, Reich PB, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats [J]. Funct Ecol, 2001, 15 (4): 423-434
13. Kang MY, Dai C, Ji WY, Jiang Y, Yuan ZY, Chen HYH. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China [J]. PLoS ONE, 2013, 8 (7): e69561
14. Yang YH, Fang JY, Ji CJ, Han WX. Above- and belowground biomass allocation in Tibetan grasslands [J]. J Veg Sci, 2009, 20 (1): 177-184
15. Dirks I, Dumbur R, Lienin P, Kleyer M, Grunzweig JM. Size and reproductive traits rather than leaf economic traits explain plant-community composition in species-rich annual vegetation along a gradient of land use intensity [J]. Front Plant Sci, 2017, 8: 891
16. Chen LP, Zhao NX, Zhang LH, Gao YB. Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China [J]. Plant Ecol, 2013, 214 (2): 221-229
17. Lavorel S, McIntyre S, Landsberg J, Forbes TDA. Plant functional classifications: from general groups to specific groups based on response to disturbance [J]. Trends Ecol Evol, 1997, 12 (12): 474-478
18. Wang Y, Qiu NW, Wang XG, Ma ZQ, Du GZ. Effects of enhanced uv-b radiation on fitness of an alpine species Cerastium glomeratum Thuill [J]. J Plant Ecol, 2008, 1 (3): 197-202
19. Niu K, Choler P, Zhao B, Du G. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands [J]. Funct Ecol, 2009, 23 (2): 274-283
20. Yan RR, Xin XP, Yan YC, Wang X, Zhang BH, Yang GX, Liu SM, Deng Y, Li LH. Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe [J]. Rangel Ecol Manage, 2015, 68 (1): 54-64
21. Craine JM, Froehle J, Tilman GD, Wedin DA, Chapin FS. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients [J]. Oikos, 2001, 93 (2): 274-285
22. 四川植被协作组. 四川植被[M]. 成都: 四川人民出版社, 1980: 225-239 [Sichuan Vegetation Coordination Group. Sichuan Vegetation [M]. Chengdu: Sichuan People’s Publishing House, 1980: 225-239]
23. 邱成. 川西北高寒草甸生态系统的恢复与重建[D]. 成都: 四川大学, 2006 [Qiu C. Rehabilitating and rebuilding for alpine meadow ecosystem in Northwest Sichuan Province [D]. Chengdu: Sichuan University, 2006]
24. Xiang S, Guo RQ, Wu N, Sun SC. Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau [J]. Ecol Eng, 2009, 35 (4): 553-562
25. Cao R, Xi XQ, Yang YHS, Wei X, Wu XW, Sun SC. The effect of water table decline on soil CO2 emission of Zoige peatland on eastern Tibetan Plateau: a four-year in situ experimental drainage [J]. Appl Soil Ecol, 2017, 120: 55-61
26. Wu XW, Duffy JE, Reich PB, Sun SC. A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming [J]. Ecol Monogr, 2011, 81 (2): 313-328
27. Niklas KJ, Enquist BJ. On the vegetative biomass partitioning of seed plant leaves, stems, and roots [J]. Am Nat, 2002, 159 (5): 482-97
28. Niklas KJ. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories [J]. New phytol, 2006, 171 (1): 27-40
29. Yang Y, Fang J, Ma W, Guo D, Mohammat A. Large-scale pattern of biomass partitioning across China’s grasslands [J]. Global Ecol Biogeogr, 2010, 19 (2): 268-277
30. Wu J, Hong J, Wang X, Sun J, Lu X, Fan J, Cai Y. Biomass partitioning and its relationship with the environmental factors at the alpine steppe in northern Tibet [J]. PLoS ONE, 2013, 8 (12): e81986
31. Niklas KJ, Cobb ED, Niinemets U, Reich PB, Sellin A, Shipley B, Wright IJ. “Diminishing returns” in the scaling of functional leaf traits across and within species groups [J]. Proc Natl Acad Sci USA, 2007, 104 (21): 8891-8896
32. Vico G, Manzoni S, Nkurunziza L, Murphy K, Weih M. Trade-offs between seed output and life span - a quantitative comparison of traits between annual and perennial congeneric species [J]. New Phytol, 2016, 209 (1): 104-14
33. 闫帮国, 樊博, 何光熊, 史亮涛, 潘志贤, 李建查, 岳学文, 刘刚才. 干热河谷草本植物生物量分配及其对环境因子的响应[J]. 应用生态学报, 2016, 27 (10): 3173-3181 [Yan BG, Fan B, He GX, Shi LT, Pan ZX, Li JC, Yue XW, Liu GC. Biomass allocations and their response to environmental factors for grass species in an aridhot valley [J]. Chin J Appl Ecol, 2016, 27 (10): 3173-3181]
34. 石福孙, 吴宁, 罗鹏, 易绍良, 吴彦, 王乾, 李亚澜, 陈槐, 高永恒. 围栏禁牧对川西北亚高山高寒草甸群落结构的影响[J]. 应用与环境生物学报, 2007, 13 (6): 767-770 [Shi FS, Luo P, Yi SL, Wu Y, Wang Q, Li YL, Chen H, Gao YH. Effect of enclosing on community structure of subalpine meadow in northwestern Sichuan, China [J]. Chin Appl Environ Biol, 2007, 13 (6): 767-770]
35. 高永恒, 陈槐, 罗鹏, 吴宁, 王根绪. 放牧强度对川西北高寒草甸植物生物量及其分配的影响[J]. 生态与农村环境学报, 2008, 24 (3): 26-32 [Gao YH, Chen H, Luo P, Wu N, Wang GX. Effect of grazing intensity on biomass of alpine meadow and its allocation in the northwestern Sichuan [J]. J Ecol Rural Environ, 2008, 24 (3): 26-32]
36. 赵彬彬, 牛克昌, 杜国祯. 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响[J]. 生态学报, 2009, 29 (3): 1596-1606 [Zhao BB, Niu KC, Du GZ. The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau [J]. Acta Ecol Sin, 2009, 29 (3): 1596-1606]
37. 张璐璐, 王孝安, 王海东, 朱志红. 刈割、施肥和浇水对垂穗披碱草生物量分配和补偿性生长的影响[J]. 兰州大学学报, 2013, 49 (6): 807-814 [Zhang LL, Wang XA, Wang HD, Zhu ZH. Effects of clipping, fertilizing and watering on biomass allocation and compensatory growth of Elymus nutans [J]. J Lanzhou Univ, 2013, 49 (6): 807-814]
38. 刘志民, 蒋德明, 高红瑛, 常学礼. 植物生活史繁殖对策与干扰关系的研究[J]. 应用生态学报, 2003, 14 (3): 418-422 [Liu ZM, Jiang DM, Gao HY, Chang XL. Relationships between plant reproductive strategy and disturbance [J]. Chin J Appl Ecol, 2007, 13 (6): 767-770]
39. Bullock JM, Hill BC, Silvertown J, Sutton M. Gap colonization as a source of grassland community change - effects of gap size and grazing on the rate and mode of colonization by different species[J]. Oikos, 1995, 72 (2): 273-282
40.

相似文献/References:

[1]丁建林,韩越,包维楷,等.岷江百合的生物量分配对策及其海拔效应[J].应用与环境生物学报,2014,20(02):254.[doi:10.3724/SP.J.1145.2014.00254]
 DING Jianlin,HAN Yue,BAO Weikai,et al.Biomass allocation strategies of Lilium regale and their altitudinal effects[J].Chinese Journal of Applied & Environmental Biology,2014,20(06):254.[doi:10.3724/SP.J.1145.2014.00254]
[2]周天阳,高景,贺俊东,等.高山草地环山样带异质坡向上3种植物的株高、叶片性状与生物量分配[J].应用与环境生物学报,2018,24(03):425.[doi:10.19675/j.cnki.1006-687x.2017.08029]
 ZHOU Tianyang,GAO Jing,et al.Plant height, leaf traits, and biomass allocation of three species at heterogeneous slope aspects along a transect in an alpine meadow[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):425.[doi:10.19675/j.cnki.1006-687x.2017.08029]

更新日期/Last Update: 2018-12-25