|本期目录/Table of Contents|

[1]岳川,曹红利,王赞,等.茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达[J].应用与环境生物学报,2018,24(06):1375-1381.[doi:10.19675/j.cnki.1006-687x.2018.09010]
 YUE Chuan,et al..Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1375-1381.[doi:10.19675/j.cnki.1006-687x.2018.09010]
点击复制

茶树RING-finger型E3泛素连接酶基因CsSDIR的克隆与表达()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
24卷
期数:
2018年06期
页码:
1375-1381
栏目:
研究论文
出版日期:
2018-12-25

文章信息/Info

Title:
Cloning and expression of RING-finger E3 ubiquitin ligase CsSDIR1 gene in tea plant (Camellia sinensis)
作者:
岳川 曹红利 王赞 林宏政 叶乃兴
福建农林大学园艺学院/茶学福建省高校重点实验室 福州 350002
Author(s):
YUE Chuan et al.
College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China
关键词:
茶树RING-finger E3泛素连接酶CsSDIR1基因非生物胁迫表达分析
Keywords:
tea plant RING-finger E3 ubiquitin ligase CsSDIR1 gene abiotic stress expression analysis
分类号:
S571.1
DOI:
10.19675/j.cnki.1006-687x.2018.09010
摘要:
蛋白质泛素化修饰广泛参与植物的生长发育及逆境胁迫响应,其中RING-finger型E3泛素连接酶基因salt and drought induced ring finger1(SDIR1)在植物抗逆中具有重要的作用. 为了解茶树SDIR1(CsSDIR1)在抗逆应答中的作用机制,采用RT-PCR技术从茶树中克隆CsSDIR1的全长cDNA序列及启动子序列,对其生物信息学特征进行分析,并采用qRT-PCR技术检测该基因的组织表达特异性及在不同逆境胁迫下的表达模式. 结果显示,CsSDIR1基因的开放阅读框(ORF)长831 bp,编码276个氨基酸,蛋白质分子量(Mr)为30.085 × 103,理论等电点为6.54;氨基酸序列分析表明,CsSDIR1属于疏水性蛋白、定位在胞内膜上,与其他植物中的SDIR1相似性较高,在其N-端和C-端分别含有2个保守的跨膜结构域和C3H2C3 RING finger功能域;CsSDIR1与猕猴桃关系最近. CsSDIR1上游启动子含多个与干旱胁迫和盐胁迫响应相关的元件. 表达分析显示,CsSDIR1在茎中的表达量显著高于根、叶和花;ABA、干旱和高盐诱导其表达,低温抑制CsSDIR1的表达. 根据上述结果推测CsSDIR1基因可能参与了茶树的抗逆响应. (图6 参19)
Abstract:
Protein ubiquitination regulates many aspects of plant development and stress response. The RING-finger type E3 ubiquitin ligase SDIR1 (salt and drought induced ring finger 1) gene plays a key role in plant stress response. In this study, the full-length cDNA and the promoter sequences of CsSDIR1 were isolated from tea plants using the RT-PCR technology, and its bioinformatics characteristics were systematically analyzed. The expression patterns of CsSDIR1 in various tissues and in response to cold, drought, salt, and ABA treatments were also investigated by quantitative real-time RT-PCR (qRT-PCR). The sequence of CsSDIR1 contains a complete open reading frame of 831 bp, coding for a 276-long amino acid protein with a molecular weight of (Mr) 30.085 × 103 and a theoretical isoelectric point of 6.54. CsSDIR1 was predicted to be a hydrophobic protein localized on the intracellular membranes. The analysis of the amino acid sequence characteristics showed that CsSDIR1 contains two putative transmembrane domains at the N-terminus and a C3H2C3 RING-finger domain at the C-terminus; it shares high similarity with other plants’ SDIR1, and has the closest relationship to Actinidia sinensis. A cis-acting regulatory elements prediction showed that the CsSDIR1 promoter contains many cis-acting elements, especially drought and salt stress response elements. The qRT-PCR analysis indicated that the CsSDIR1 gene has a high expression level in stems, followed by roots, leaves, and flowers; the expression of the CsSDIR1 gene is up-regulated by ABA, salt, and drought treatments, whereas it is down-regulated in response to cold stress. These results demonstrated that the CsSDIR1 gene might be involved in the plant stress response of tea trees.

参考文献/References:

1 刘锴栋, 袁长春. 泛素/26S蛋白酶体途径及其在植物生长发育中的功能[J]. 基因组学与应用生物学, 2009, 28 (6): 1219-1228 [Liu KD, Yuan CC. The ubiquitin/26S proteasome pathway and the function in plant development[J]. Genom Appl Biol, 2009, 28 (6): 1219-1228]
2 Shu K, Yang W. E3 Ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses [J]. Plant Cell Physiol, 2017, 58 (9): 1461-1476
3 秦岭, 杨延兵, 陈二影, 张华文, 王海莲, 刘宾, 管延安. RING-finger类型泛素连接酶E3及其与植物抗旱性的关系[J]. 分子植物育种, 2017, 15 (7): 2829-2835 [Qin L, Yang YB, Chen EY, Zhang HW, Wang HL, Liu B, Guan YA. RING-finger type ubiquitin ligase E3 and its relationship with the plant drought resistance in plants [J]. Mol Plant Breed, 2017, 15 (7): 2829-2835]
4 Du Z, Zhou X, Li L, Su Z. plantsUPS: a database of plants’ Ubiquitin Proteasome System [J]. BMC Genom, 2009, 10: 227
5 Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice [J]. Plant Mol Biol, 2011, 76 (1-2): 145-156
6 Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis [J]. Plant Cell, 2015, 27 (1): 214-227
7 Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis [J]. Plant Cell, 2007, 19 (6): 1912-1929
8 Zhang Y, Li Y, Gao T, Zhu H, Wang DJ, Zhang H, Ning Y, Liu L, Wu Y, Chu C, Guo S, Xie Q. Arabidopsis SDIR1 enhances drought tolerance in crop plants [J]. Biosci Biotechnol Biochem, 2008, 72 (8): 2251-2254
9 Tak H, Mhatre M. Molecular characterization of VvSDIR1 from Vitis vinifera and its functional analysis by heterologous expression in Nicotiana tabacum [J]. Protoplasma, 2013, 250 (2): 565-576
10 岳川, 曹红利, 郝心愿, 郭玉琼, 叶乃兴, 王新超, 杨亚军. 茶树CsASR基因的克隆及其表达分析[J]. 茶叶科学, 2017, 37 (4): 399-410 [Yue C, Cao HL, Hao XY, GuoYQ, Ye NX, Wang XC, Yang YJ. Cloning and expression analysis of CsASR gene in tea plant (Camellia sinensis) [J]. J Tea Sci, 2017, 37 (4): 399-410]
11 Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115 (18): E4151-4158
12 Hao X, Horvath D, Chao W, Yang Y, Wang X, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze) [J]. Int J Mol Sci, 2014, 15 (12): 22155-22172
13 Nakamura N. The role of the transmembrane RING finger proteins in cellular and organelle function [J]. Membranes, 2011, 1 (4): 354-93
14 Xia Z, Su X, Liu J, Wang M. The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum [J]. Genetica, 2013, 141 (1-3): 11-21
15 Xia Z, Liu Q, Wu J, Ding J. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize [J]. Gene, 2012, 495 (2): 146-153
16 王瑞同, 王景一, 毛新国, 昌小平, 刘惠民, 景蕊莲. 小麦RING型E3泛素连接酶基因TaSDIR1-D克隆与功能分析[J]. 植物遗传资源学报, 2018, 19 (5): 951-958 [Wang RT, Wang JY, Mao XG, Chang XP, Liu HM, Jing RL. Cloning and functional analysis of a RING-type E3 ubiquitin ligase gene TaSDIR1-D in wheat [J]. J Plant Genet Res, 2018, 19 (5): 951-958]
17 Cho SK, Ryu MY, Seo DH, Kang BG, Kim WT. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses [J]. Plant Physiol, 2011, 157 (4): 2240-2257
18 Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis [J]. Plant J, 2006, 47 (3): 343-355
19 Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response [J]. Plant Physiol, 2011, 156 (2): 550-563

相似文献/References:

[1]黄安平,韩宝瑜,包小村.茶刺蛾危害后茶树挥发性有机化合物释放变化[J].应用与环境生物学报,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
 HUANG Anping,HAN Baoyu,BAO Xiaocun.Change in Volatile Organic Compounds from Camellia sinensis (L.) O. Kuntze Damaged by Iragoides fasciata Moore (Lepidoptera: Eucleidae)[J].Chinese Journal of Applied & Environmental Biology,2011,17(06):819.[doi:10.3724/SP.J.1145.2011.00819]
[2]王海斌** 叶江华 陈晓婷 贾小丽 孔祥海.连作茶树根际土壤酸度对土壤微生物的影响[J].应用与环境生物学报,2016,22(03):480.[doi:10.3724/SP.J.1145.2015.09019]
 WANG Haibin**,YE Jianghua,CHEN Xiaoting,et al.Effect on soil microbes of the rhizospheric soil acidity of tea tree continuous cropping*[J].Chinese Journal of Applied & Environmental Biology,2016,22(06):480.[doi:10.3724/SP.J.1145.2015.09019]
[3]孙平,章国营,向萍,等.茶树中莽草酸途径DHD/SDH基因的表达调控[J].应用与环境生物学报,2018,24(02):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
 SUN Ping,ZHANG Guoying,XIANG Ping,et al.Expression and regulation of the shikimic acid pathway gene DHD/SDH in tea plant (Camellia sinensis)[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):322.[doi:10.19675/j.cnki.1006-687x.2017.05014]
[4]王海斌,陈晓婷,丁力,等.不同树龄茶树根际土壤细菌多样性的T-RFLP分析[J].应用与环境生物学报,2018,24(04):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
 WANG Haibin,**,CHEN Xiaoting,et al.Using T-RFLP technology to analyze bacterial diversity in the rhizospheric soils of tea tree at different ages[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):775.[doi:10.19675/j.cnki.1006-687x.2017.10003]
[5]郭玉琼,黄道斌,常笑君,等.铁观音茶树体胚发生及其内源激素变化[J].应用与环境生物学报,2018,24(04):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
 GUO Yuqiong,HUANG Daobin,CHANG Xiaojun,et al.Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):824.[doi:10.19675/j.cnki.1006-687x.2017.12027]
[6]郭玉琼,王仲,朱晨,等.茶树CSD1基因及其启动子克隆与低温胁迫下的表达[J].应用与环境生物学报,2018,24(05):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
 GUO Yuqiong,WANG Zhong,ZHU Chen,et al.Cloning and expression of the copper/zinc-superoxide dismutase 1 gene and its promoter under low temperature stress in Camellia sinensis[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1122.[doi:10.19675/j.cnki.1006-687x.2018.02021]
[7]王海斌,陈晓婷,丁力,等.福建省安溪县茶园土壤酸化对茶树产量及品质的影响[J].应用与环境生物学报,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]
 WANG Haibin,et al..Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province[J].Chinese Journal of Applied & Environmental Biology,2018,24(06):1398.[doi:10.19675/j.cnki.1006-687x.2017.12008]

更新日期/Last Update: 2018-12-25