|本期目录/Table of Contents|

[1]王海斌,何海斌,邱龙,等.低磷诱导水稻化感抑草能力增强的分子生理特性[J].应用与环境生物学报,2009,15(03):289-294.[doi:10.3724/SP.J.1145.2009.00289]
 WANG Haibin,HE Haibin,QIU Long,et al.Molecular Physiological Properties of the Enhanced Weed-Suppression Ability of Rice Allelopathy Induced by Lower Phosphorus Supplies[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):289-294.[doi:10.3724/SP.J.1145.2009.00289]
点击复制

低磷诱导水稻化感抑草能力增强的分子生理特性()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
15卷
期数:
2009年03期
页码:
289-294
栏目:
研究论文
出版日期:
2009-05-15

文章信息/Info

Title:
Molecular Physiological Properties of the Enhanced Weed-Suppression Ability of Rice Allelopathy Induced by Lower Phosphorus Supplies
作者:
王海斌何海斌邱龙沈荔花方长旬林瑞余林文雄
1福建农林大学生物农药与化学生物学教育部重点实验室,2福建农林大学生命科学学院 福州 350002
Author(s):
WANG Haibin1 2 HE Haibin1 2 QIU Long2 SHEN Lihua1 2 FANG Changxun2 LIN Ruiyu1 2 & LIN Wenxiong1 2**
1Key Laboratory of Ministry of Education for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
水稻(Oryza sativa L.)化感作用化感物质低磷胁迫基因表达
Keywords:
rice (Oryza sativa L.) allelopathy allelochemical phosphorus deficiency gene expression
分类号:
Q945.78 : S511.01
DOI:
10.3724/SP.J.1145.2009.00289
文献标志码:
A
摘要:
摘 要 以化感水稻PI312777和非化感水稻Lemont为供体,以无芒稗(Echinochloa crusgalli L.)为受体,采用水培的方法
研究低磷(P,0.5 mg L-1)胁迫下稻/稗共培体系中水稻化感抑草作用的分子生理机制. 结果表明,低磷条件下,化感水稻
PI312777抑草效应增强,对稗草的保护酶活性及其它生理生化指标呈明显的抑制作用. 进一步分析发现,低磷条件下,
化感水稻PI312777根和叶组织中苯丙氨酸解氨酶活性及总酚含量上升,且明显高于非化感水稻Lemont. 对水稻根系分
泌物中酚类物质的HPLC分析结果表明,低磷条件下,从化感水稻PI312777根系分泌物中检出的酚酸类物质总量是正
常磷素条件下的2.89倍,而非化感水稻Lemont中的则是正常磷素条件下的1.17倍. 两个水稻品种根部和叶部酚酸代谢
途径关键酶基因的差异表达分析结果表明,化感水稻PI312777酚酸代谢途径的4个关键酶基因均上调表达,而非化感
水稻Lemont中只有苯丙氨酸解氨酶基因上调,其余均下调. 可见,低磷条件下,化感水稻PI312777化感抑草能力增强与
其酚酸代谢途径关键酶基因增强表达,代谢途径旺盛,进而导致酚酸类物质含量增加有关. 图5 表3 参19
Abstract:
Abstract In order to explore the changing mechanism of rice allelopathic potential under lower phosphorus supplies, allelopathic rice PI312777 and non-allelopathic rice Lemont were employed as donor plants, and the morphological and physiobiochemical characteristics of receiver plant branyard grass (Echinochloa crusgalli) mediated by the two donor plants were investigated under lower phosphorus supplies [0.5 mg (P) L-1, denoted as P-) and normal phosphorus [6 mg (P) L-1, denoted as P+]. Simultaneously, the content of phenolics and activity of phenylalanine ammonia-lyase in the two rice accessions were detected. Furthermore, differential expression of 4 genes encoding the key enzymes involved in phenolic metabolic pathway was also detected in rice by Real Time Fluorescent Quantitative PCR (FQ-PCR) to evaluate the expression changes in the two rice accessions under lower phosphorus supplies. The results showed that under lower phosphorus supplies, the two rice accessions inhibited the growth of barnyard grass to different extents. The inhibitory effect (IR, %) of allelopathic rice PI312777 on barnyard grass was greatly higher than that of non allelopathic rice Lemont, showing 56.51% (IR, the same below) vs 8.59% in the suppression of root length of barnyard grass, 38.49% vs 5.59% in plant height, and 40.21% vs 4.24% in dry weight. Under lower phosphorus condition, the contents of MDA, soluble carbohydrate and soluble protein, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and root activity of barnyard grass were decreased at a higher rate by allelopathic rice PI312777 than those by non-allelopathic rice Lemont. Furthermore, the content of phenolics and activity of phenylalanine ammonia-lyase in allelopathic rice PI312777 were also significantly enhanced compared with those in non-allelopathic rice. The result from the analysis of phenolic acids in the two rice root exudates by using HPLC showed that the total amount of ten phenolic acids concerned in allelopathic rice PI312777 under lower phosphorus supplies was 2.89 times as high as that under normal phosphorus condition. However, it was only 1.17 times in non allelopathic rice Lemont under the same condition. Simultaneously, the expressions of the genes encoded phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, hydroxylase, and O-methyltransferases, which are the key enzymes involved in phenolic acid metabolic pathway, were all up-regulated in the roots and leaves of allelopathic rice PI312777 under lower phosphorus supplies. But all these enzymes were down-regulated in non-allelopathic rice Lemont except phenylalanine ammonia-lyase in the leaves under the same condition. The results suggested that enhancement of rice allelopathic potential in the suppression of the target weeds under lower phosphorus supplies might be attributed to the up-regulation of the key enzymes involved in phenolic acid metabolism, which led to the activation of phenolic metabolism, and increased phenolic allelochemicals and consequently inhibited the growth of barnyard grass. Fig 5, Tab 3, Ref 19

参考文献/References:

1 林文雄. 水稻化感作用. 厦门: 厦门大学出版社, 2006
2 Lin WX (林文雄), He HB (何海斌), Xiong J (熊君), Shen LH (沈荔花),
Wu MH (吴敏鸿), Lin RY (林瑞余), Liang YY (梁义元), Li ZW (李兆
伟), Chen T (陈婷). Advance in the investigation of rice allelopathy and
its molecular ecology. Acta Ecol Sin (生态学报), 2006, 26 (8): 2687~2694
3 Einhellig FA. Interactive effects of allelochemicals and environmental
st ress. In: Chou CH, Waller GR, eds. Phytochemical Ecology:
Allelochemicals, Mycotoxins, and Insect Pheromones and Allomones.
Taipei, China: Institute of Botany, Academia Sinica Monograph Series,
1989, 9:101~106
4 Xiong J (熊君), Lin WX (林文雄), Zhou JJ (周军建), Wu MH (吴敏
鸿), Chen XX (陈祥旭), He HQ (何华勤), Guo YC (郭玉春), Liang
YY (梁义元). Study on biointerference between barnyardgrass and rice
accessions at different nitrogen regimes. Chin J Appl Ecol (应用生态学
报), 2005, 16 (5): 885~889
5 Einhellig FA. Interactions involving allelopathy in cropping system.
Agron J, 1996, 88: 886~893
6 Wu HW, Pratley J, Lemerle D, Haig T. Crop cultivars with allelopathy
capability. Weed Res, 1999, 39: 171~180
7 He HQ (何华勤), Lin WX (林文雄), Liang YY (梁义元), Song BQ (宋碧
清), Ke YQ (柯玉琴), Guo YC (郭玉春), Liang KJ (梁康迳). Analyzing
the molecular mechanism of crop allelopathy by using differential
proteomics. Acta Ecol Sin (生态学报), 2005, 25 (12): 3141~3145
8 Qiu L (邱龙), Xiong J (熊君), Wang HB (王海斌), Fang CX (方长旬),
He HB (何海斌), Li ZW (李兆伟), Lin WX (林文雄). The nitrogen
nutrient efficiency and the expression analysis of the related genes in
different allelopathic potential rice (Oryza sativa L.) varieties at seedling
stage. Acta Ecol Sin (生态学报), 2008, 28 (2): 677~684
9 Dilday RH, Nastasi P, Smith RJ, Jr. Allelopathic observation in rice
(Oryza sativa L.) to ducksalad (Heteranthera limosa). Proc Arkansas
Acad Sci, 1989, 43: 21~22
10 Dilday RH, Lin J, Yan W. Identification of allelopathy in the USDAARS
rice germplasm collection. Austr J Exp Agric, 1994, 34: 907~910
11 张志良, 瞿伟箐. 植物生理学实验指导. 北京: 高等教育出版社, 2003.
35~132
12 Zhang FS (张福锁), Wang JG (王敬国), Xu J (薛建), Zhao ZJ (赵紫娟),
Ruan WB (阮维斌). Measurement of five allelopathic related phenolic
acids by high performance liquid chromatography. Chin J Appl Environ
Biol (应用与环境生物学报), 2001, 7 (6): 609~612
13 Wang HB (王海斌), Xiong J (熊君), Fang CX (方长旬), Qiu L (邱
龙), Wu WX (吴文祥), He HB (何海斌), Lin WX (林文雄). FQ-PCR
analysis on the differential expression of the key enzyme genes involved
in isoprenoid metabolic pathway in allelopathic and weak allelopathic
rice accessions (Oryza sativa L.) under nitrogen stress condition. Acta
Agron Sin (作物学报), 2007, 33 (8): 1316~1321
14 Xiong J (熊君), Wang HB (王海斌), Fang CX (方长旬), Qiu L (邱龙),
Wu WX (吴文祥), He HB (何海斌), Lin WX (林文雄). The differential
expression of the genes of the key enzymes involved in phenolic
compound metabolism in rice (Oryza sativa L.) under different nitrogen
supplies. J Plant Physiol Mol Biol (植物生理与分子生物学报), 2007,
33 (5): 387~394
15 Buchanan BB, Gruissem W, Jones RL. Biochemistry & Molecular
Biology of Plants. Poole, UK: Orca Book Services and American
Society of Plant Physiologists, 2002. 988~1023
16 Mckey D, Waterman PG, Mbi CN, Gar tlan JS, Struhsaker TT.
Phenolic content of vegetation in two African rain forests: Ecological
applications. Science, 1978, 202: 61~64
17 Koppe EDE, Southwick LM, Bittell JE. The relationship of tissue
chlorogenic acid concentrations and leaching of phenolics from
sunflowers grown under varying phosphates nutrient conditions. Can J
Bot, 1976, 54: 593~599
18 Lin WX (林文雄), He HQ (何华勤), Guo YC (郭玉春), Liang YY (梁
义元), Chen FY (陈芳育). Rice allelopathy and its physiobiochemical
characteristics. Chin J Appl Ecol (应用生态学报), 2001, 12 (6):
871~875
19 Qiu L (邱龙), Wang HB (王海斌), Xiong J (熊君), Fang CX (方长旬),
Wu WX (吴文祥), He HB (何海斌), Lin WX (林文雄). Regulation
effect of exogenous salicylic acid on weed suppression and molecular
physiological characteristics of allelopathic rice. Chin J Appl Ecol (应用
生态学报), 2008, 19 (2): 330~336

相似文献/References:

[1]韩志军,陈静,郑寒,等.花椒叶浸提液对大豆种子萌发和幼苗生长的化感作用[J].应用与环境生物学报,2011,17(04):585.[doi:10.3724/SP.J.1145.2011.00585]
 HAN Zhijun,CHEN Jing,ZHENG Han,et al.Allelopathic Effect of Zanthoxylum bungeanum Extracts on Seed Germination and Seedling Growth of Soybean[J].Chinese Journal of Applied & Environmental Biology,2011,17(03):585.[doi:10.3724/SP.J.1145.2011.00585]
[2]陈国元,赵超.共培养条件下菖蒲和铜绿微囊藻之间的化感作用[J].应用与环境生物学报,2012,18(06):1017.[doi:10.3724/SP.J.1145.2012.01017]
 CHEN Guoyuan,ZHAO Chao.Mutual Allelopathy of Acorus calamus and Microcystis aeruginosa in Co-cultivation[J].Chinese Journal of Applied & Environmental Biology,2012,18(03):1017.[doi:10.3724/SP.J.1145.2012.01017]
[3]李键,刘奕,吴承祯,等.木麻黄的两种化感物质对其水培幼苗叶绿素荧光参数的影响[J].应用与环境生物学报,2013,19(05):781.[doi:10.3724/SP.J.1145.2013.00781]
 LI Jian,LIU Yi,WU Chengzhen,et al.Effect of Two Allelochemicals of Casuarina equisetifolia L. on Chlorophyll Fluorescence Parameters in Hydroponically Cultured Seedling[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):781.[doi:10.3724/SP.J.1145.2013.00781]
[4]赵高卷,马焕成,胡世俊,等.紫茎泽兰对木棉种子萌发和幼苗光合特性的影响[J].应用与环境生物学报,2014,20(04):683.[doi:10.3724/SP.J.1145.2014.01014]
 ZHAO Gaojuan,MA Huancheng,HU Shijun,et al.Impacts of Eupatorium adenophorum on seed germination and seedling photosynthetic characters of Bombax ceiba L.[J].Chinese Journal of Applied & Environmental Biology,2014,20(03):683.[doi:10.3724/SP.J.1145.2014.01014]
[5]闫志强,宋本如,刘黾,等.5种沉水植物对斜生栅藻的化感作用[J].应用与环境生物学报,2015,21(01):75.[doi:10.3724/SP.J.1145.2014.05026]
 YAN Zhiqiang,SONG Benru,LIU Mian,et al.Allelopathic effect of five submerged macrophytes on Senedesmus obliquus[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):75.[doi:10.3724/SP.J.1145.2014.05026]
[6]李仲彬,胡庭兴,李霜,等.香樟凋落叶在土壤中分解初期对凤仙花生长和生理特性的影响[J].应用与环境生物学报,2015,21(03):571.[doi:10.3724/SP.J.1145.2014.10027]
 LI Zhongbin,HU Tingxing,LI Shuang,et al.Effects of initial decomposing leaf litter of Cinnamomum camphora on the growth and physiology of Impatiens balsamina[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):571.[doi:10.3724/SP.J.1145.2014.10027]
[7]杨珊珊,王茜,胡红玲,等.银木凋落叶分解对玉米生长的影响及施肥的缓解作用[J].应用与环境生物学报,2015,21(04):770.[doi:10.3724/SP.J.1145.2015.04033]
 YANG Shanshan,WANG Qian,HU Hongling,et al.Allelopathy of Cinnamomum septentrionale leaf litter on maize growth and relieving effect of fertilization[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):770.[doi:10.3724/SP.J.1145.2015.04033]
[8]周光良,胡庭兴,吴张磊,等.核桃凋落叶分解对菠菜生长和生理特性的影响[J].应用与环境生物学报,2015,21(04):777.[doi:10.3724/SP.J.1145.2015.01032]
 ZHOU Guangliang,HU Tingxing,WU Zhanglei,et al.Effects of Juglans regia leaf litter decomposition on growth and physiological characteristics of spinach (Spinacia oleracea)[J].Chinese Journal of Applied & Environmental Biology,2015,21(03):777.[doi:10.3724/SP.J.1145.2015.01032]
[9]史洪洲,汪扬媚,胡庭兴,等.核桃凋落叶分解对小麦生长的影响及施氮的缓解效应[J].应用与环境生物学报,2017,23(05):818.[doi:10.3724/SP.J.1145.2016.10040]
 SHI Hongzhou,WANG Yangmei,et al.Effects of decomposing walnut leaf litter on growth of wheat and counteracting effect of N fertilization[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):818.[doi:10.3724/SP.J.1145.2016.10040]
[10]杨珊珊,王茜,胡庭兴,等.3种农作物(玉米、黄瓜、豇豆)对银木凋落叶化感作用的生理响应[J].应用与环境生物学报,2018,24(02):292.[doi:10.19675/j.cnki.1006-687x.2017.05016]
 YANG Shanshan,WANG Qian,HU Tingxing,et al.Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops (corn, cucumber, and cowpea)[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):292.[doi:10.19675/j.cnki.1006-687x.2017.05016]
[11]王海斌 何海斌 曾聪明 吴良展 沈荔花 熊君 林瑞余 林文雄*.低磷胁迫下不同品种水稻秧苗生长的分子生理特性[J].应用与环境生物学报,2008,14(05):593.

备注/Memo

备注/Memo:
国家自然科学基金(Nos. 30471028,30671220)、福建省生态学重点学科项目(No. 0608537)和福建省教育厅项目(No. JA08055)资助 Supported by the National Natural Science Foundation of China (Nos. 30471028, 30671220), the Ecology Program of Fujian Province (No. 0608537), and the Education Department Program of Fujian Province, China (No. JA08055)
通讯作者 Corresponding author (E-mail: wenxiong181@163.com)
更新日期/Last Update: 2009-07-03